Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Statistical Inference in Stochastic Processes, 


Варианты приобретения
Цена: 10104.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания


Название:  Statistical Inference in Stochastic Processes
ISBN: 9780367403072
Издательство: Taylor&Francis
Классификация:
ISBN-10: 0367403072
Обложка/Формат: Paperback
Страницы: 292
Вес: 0.54 кг.
Дата издания: 20.12.2019
Серия: Probability: pure and applied
Язык: English
Размер: 226 x 152 x 15
Читательская аудитория: Tertiary education (us: college)
Основная тема: Statistical Theory & Methods
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: Covering both theory and applications, this collection of eleven contributed papers surveys the role of probabilistic models and statistical techniques in image analysis and processing, develops likelihood methods for inference about parameters that determine the drift and the jump mechanism of a di


The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Stochastic Processes

Автор: Gallager
Название: Stochastic Processes
ISBN: 1107039754 ISBN-13(EAN): 9781107039759
Издательство: Cambridge Academ
Рейтинг:
Цена: 11246.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This definitive textbook provides a solid introduction to stochastic processes, covering both theory and applications. It is written by one of the world`s leading information theorists, evolving over twenty years of graduate classroom teaching, and is accompanied by over 300 exercises, with online solutions for instructors.

Stochastic Differential Equations

Автор: Oksendal
Название: Stochastic Differential Equations
ISBN: 3540047581 ISBN-13(EAN): 9783540047582
Издательство: Springer
Рейтинг:
Цена: 8223.00 р.
Наличие на складе: Есть (1 шт.)
Описание: Gives an introduction to the basic theory of stochastic calculus and its applications. This book offers examples in order to motivate and illustrate the theory and show its importance for many applications in for example economics, biology and physics.

Weak Convergence of Stochastic Processes: With Applications to Statistical Limit Theorems

Автор: Vidyadhar S. Mandrekar
Название: Weak Convergence of Stochastic Processes: With Applications to Statistical Limit Theorems
ISBN: 3110475421 ISBN-13(EAN): 9783110475425
Издательство: Walter de Gruyter
Цена: 11148.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The purpose of this book is to present results on the subject of weak convergence in function spaces to study invariance principles in statistical applications to dependent random variables, U-statistics, censor data analysis. Different techniques, formerly available only in a broad range of literature, are for the first time presented here in a self-contained fashion. Contents:Weak convergence of stochastic processesWeak convergence in metric spacesWeak convergence on C[0, 1] and D[0,?)Central limit theorem for semi-martingales and applicationsCentral limit theorems for dependent random variablesEmpirical processBibliography

Advances in the Statistical Sciences: Applied Probability, Stochastic Processes, and Sampling Theory

Автор: I.B. MacNeill; G. Umphrey
Название: Advances in the Statistical Sciences: Applied Probability, Stochastic Processes, and Sampling Theory
ISBN: 9401086222 ISBN-13(EAN): 9789401086226
Издательство: Springer
Рейтинг:
Цена: 12157.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: On May 27-31, 1985, a series of symposia was held at The University of Western Ontario, London, Canada, to celebrate the 70th birthday of Pro- fessor V.

Statistical Inference for Ergodic Diffusion Processes

Автор: Yury A. Kutoyants
Название: Statistical Inference for Ergodic Diffusion Processes
ISBN: 184996906X ISBN-13(EAN): 9781849969062
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first book in inference for stochastic processes from a statistical, rather than a probabilistic, perspective. It provides a systematic exposition of theoretical results from over ten years of mathematical literature and presents, for the first time in book form, many new techniques and approaches.

Statistical Inference for Diffusion Type Processes: Kendall`s Library of Statistics 8

Автор: B.L.S. Prakasa Rao
Название: Statistical Inference for Diffusion Type Processes: Kendall`s Library of Statistics 8
ISBN: 0470711124 ISBN-13(EAN): 9780470711125
Издательство: Wiley
Рейтинг:
Цена: 16782.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Decision making in all spheres of activity involves uncertainty. If rational decisions have to be made, they have to be based on the past observations of the phenomenon in question.

A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

Автор: Hald Anders
Название: A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935
ISBN: 0387464085 ISBN-13(EAN): 9780387464084
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a history of parametric statistical inference, written by one of the most important historians of statistics of the 20th century, Anders Hald. This book can be viewed as a follow-up to his two most recent books, although this current text is much more streamlined and contains new analysis of many ideas and developments. And unlike his other books, which were encyclopedic by nature, this book can be used for a course on the topic, the only prerequisites being a basic course in probability and statistics.The book is divided into five main sections:* Binomial statistical inference;* Statistical inference by inverse probability;* The central limit theorem and linear minimum variance estimation by Laplace and Gauss;* Error theory, skew distributions, correlation, sampling distributions;* The Fisherian Revolution, 1912-1935.Throughout each of the chapters, the author provides lively biographical sketches of many of the main characters, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. He also examines the roles played by DeMoivre, James Bernoulli, and Lagrange, and he provides an accessible exposition of the work of R.A. Fisher.This book will be of interest to statisticians, mathematicians, undergraduate and graduate students, and historians of science.

Simulation and Inference for Stochastic Processes with YUIMA

Автор: Stefano M. Iacus; Nakahiro Yoshida
Название: Simulation and Inference for Stochastic Processes with YUIMA
ISBN: 3319555677 ISBN-13(EAN): 9783319555676
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Levy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes.

Stochastic Processes - Inference Theory

Автор: Malempati M. Rao
Название: Stochastic Processes - Inference Theory
ISBN: 3319121715 ISBN-13(EAN): 9783319121710
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is the revised and enlarged 2nd edition of the authors` original text, which was intended to be a modest complement to Grenander`s fundamental memoir on stochastic processes and related inference theory.

Statistical Inference Via Convex Optimization

Автор: Juditsky Anatoli, Nemirovski Arkadi
Название: Statistical Inference Via Convex Optimization
ISBN: 0691197296 ISBN-13(EAN): 9780691197296
Издательство: Wiley
Рейтинг:
Цена: 13939.00 р.
Наличие на складе: Поставка под заказ.

Описание:

This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.

Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems--sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals--demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.

Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.

Fundamental Statistical Inference: A Computational Approach

Автор: Marc S. Paolella
Название: Fundamental Statistical Inference: A Computational Approach
ISBN: 1119417864 ISBN-13(EAN): 9781119417866
Издательство: Wiley
Рейтинг:
Цена: 15674.00 р.
Наличие на складе: Поставка под заказ.

Описание:

A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field

This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided.

The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution.

Presented in three parts--Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics--Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия