Автор: Cangeloso, Sal Название: Led lighting ISBN: 1449334768 ISBN-13(EAN): 9781449334765 Издательство: Wiley Рейтинг: Цена: 871.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Due to a combination of advances in technology, government legislation, and market forces, the LED lighting market it set to explode.
Автор: Liu S Название: Led packaging for lighting application ISBN: 0470827831 ISBN-13(EAN): 9780470827833 Издательство: Wiley Рейтинг: Цена: 17416.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Since the first light-emitting diode (LED) was invented by Holonyak and Bevacqua in 1962, LEDs have made remarkable progress in the past few decades with the rapid development of epitaxy growth, chip design and manufacture, packaging structure, processes, and packaging materials.
Описание: This book reviews the application of semiconductor nanocrystals also known as colloidal quantum dots (QDs) to LED lighting for indoors and outdoors as well as LED backlighting in displays, summarizing the color science of QDs for lighting and displays and presenting recent developments in QD-integrated LEDs and display research. By employing QDs in color-conversion LEDs, it is possible to simultaneously accomplish successful color rendition of the illuminated objects and a good spectral overlap between the emission spectrum of the light source and the sensitivity of the human eye at a warm white color temperature – something that is fundamentally challenging to achieve with conventional sources, such as incandescent and fluorescent lamps, and phosphor-based LEDs.
Описание: The development of nitride-based light-emitting diodes (LEDs) has led to advancements in high-brightness LED technology for solid-state lighting, handheld electronics, and advanced bioengineering applications. Nitride Semiconductor Light-Emitting Diodes (LEDs) reviews the fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations. Part one reviews the fabrication of nitride semiconductor LEDs. Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques and the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. Part two covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots. Further chapters discuss the development of LED encapsulation technology and the fundamental efficiency droop issues in gallium indium nitride (GaInN) LEDs. Finally, part three highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infrared emitters, and automotive lighting. Nitride Semiconductor Light-Emitting Diodes (LEDs) is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors.
Автор: Deshayes, Yannick Название: Reliability and Robustness and Failure Mechanisms of Leds Devices ISBN: 1785481525 ISBN-13(EAN): 9781785481529 Издательство: Elsevier Science Рейтинг: Цена: 12801.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The rapid growth of the use of optoelectronic technology in Information and Communications Technology (ICT) has seen a complementary increase in the performance of such technologies. As a result, optoelectronic technologies have replaced the technology of electronic interconnections. However, the control of manufacturing techniques for optoelectronic systems is more delicate than that of microelectronic technologies. This practical resource, divided into four chapters, examines several methods for determining the reliability of infrared LED devices. The primary interest of this book focuses on methods of extracting fundamental parameters from the electrical and optical characterization of specific zones in components. Failure mechanisms are identified based on measured performance before and after aging tests. Knowledge of failure mechanisms allows formulation of degradation laws, which in turn allow an accurate lifetime distribution for specific devices to be proposed.
Автор: Zi-Hui Zhang; Chunshuang Chu; Kangkai Tian; Yonghu Название: Deep Ultraviolet LEDs ISBN: 9811361789 ISBN-13(EAN): 9789811361784 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights the origin of low external quantum efficiency for deep ultraviolet light-emitting diodes (DUV LEDs). In addition, it puts forward solutions for increasing the internal quantum efficiency and the light extraction efficiency of DUV LEDs.
Автор: Jungsang Kim; Seema Somani; Yoshihisa Yamamoto Название: Nonclassical Light from Semiconductor Lasers and LEDs ISBN: 3642632084 ISBN-13(EAN): 9783642632082 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The quantum statistical properties of light generated in a semiconductor laser and a light-emitting diode (LED) have been a ?eld of intense research for more than a decade. This research monograph discusses recent research activities in nonclassical light generation based on semiconductor devices, performed mostly at Stanford University. When a semiconductor material is used as the active medium to generate photons, as in semiconductor lasers and LEDs, the ?ow of carriers (electrons andholes)isconvertedintoa?owofphotons. Providedthattheconversionis fast and e?cient, the statistical properties of the carriers ("pump noise") can be transferred to the photons; if pump noise can be suppressed to below the shot noise value, the noise in the photon output can also be suppressed below thePoissonlimit. Sinceelectronsandholesarefermionsandhavecharges, the statisticalpropertiesoftheseparticlescanbesigni?cantlydi?erentfromthose of photons if the structure of the light-emitting device is properly designed to provide interaction between these particles. There has been a discrepancy between the theoretical understanding and experimental observation of noise in a macroscopic resistor until very - cently. The dissipation that electrons experience in a resistor is expected to accompany the ?uctuation due to partition noise, leading to shot noise in the large dissipation limit as is the case with photons. Experimental observation shows that thermal noise, expected only in a thermal-equilibrium situation (zero-bias condition), is the only source of noise featured by a resistor, - dependent of the current.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru