Multiphysics Modeling with Application to Biomedical Engineering, Yang, Z.
Автор: Budinger, Marc. Название: Multiphysics modeling of technological systems / ISBN: 1786303787 ISBN-13(EAN): 9781786303783 Издательство: Wiley Рейтинг: Цена: 22010.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The development of mechatronic and multidomain technological systems requires the dynamic behavior to be simulated before detailed CAD geometry is available. This book presents the fundamental concepts of multiphysics modeling with lumped parameters.
The approach adopted in this book, based on examples, is to start from the physical concepts, move on to the models and their numerical implementation, and finish with their analysis. With this practical problem-solving approach, the reader will gain a deep understanding of multiphysics modeling of mechatronic or technological systems - mixing mechanical power transmissions, electrical circuits, heat transfer devices and electromechanical or fluid power actuators.
Most of the book's examples are made using Modelica platforms, but they can easily be implemented in other 0D/1D multidomain physical system simulation environments such as Amesim, Simulink/Simscape, VHDL-AMS and so on.
Автор: Zhen (Leo) Liu Название: Multiphysics in Porous Materials ISBN: 3030065731 ISBN-13(EAN): 9783030065737 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Поставка под заказ.
Описание: This book summarizes, defines, and contextualizes multiphysics with an emphasis on porous materials. It covers various essential aspects of multiphysics, from history, definition, and scope to mathematical theories, physical mechanisms, and numerical implementations. The emphasis on porous materials maximizes readers’ understanding as these substances are abundant in nature and a common breeding ground of multiphysical phenomena, especially complicated multiphysics. Dr. Liu’s lucid and easy-to-follow presentation serve as a blueprint on the use of multiphysics as a leading edge technique for computer modeling. The contents are organized to facilitate the transition from familiar, monolithic physics such as heat transfer and pore water movement to state-of-the-art applications involving multiphysics, including poroelasticity, thermohydro-mechanical processes, electrokinetics, electromagnetics, fluid dynamics, fluid structure interaction, and electromagnetomechanics. This volume serves as both a general reference and specific treatise for various scientific and engineering disciplines involving multiphysics simulation and porous materials.
Автор: Khawaja, Hassan Название: Multiphysics Modelling Of Fluid-Particulate Systems ISBN: 0128183454 ISBN-13(EAN): 9780128183458 Издательство: Elsevier Science Рейтинг: Цена: 23749.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Multiphysics Modelling of Fluid-Particulate Systems provides an explanation of how to model fluid-particulate systems using Eulerian and Lagrangian methods. The computational cost and relative merits of the different methods are compared, with recommendations on where and how to apply them provided. The science underlying the fluid‐particulate phenomena involves computational fluid dynamics (for liquids and gases), computational particle dynamics (solids), and mass and heat transfer. In order to simulate these systems, it is essential to model the interactions between phases and the fluids and particles themselves. This book details instructions for several numerical methods of dealing with this complex problem.
This book is essential reading for researchers from all backgrounds interested in multiphase flows or fluid-solid modeling, as well as engineers working on related problems in chemical engineering, food science, process engineering, geophysics or metallurgical processing.
Описание: This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell’s wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.
The series is devoted to the publication of high-level monographs, surveys and proceedings which cover the whole spectrum of computational and applied mathematics.
The books of this series are addressed to both specialists and advanced students.
Interested authors may submit book proposals to the Managing Editor or to any member of the Editorial Board.
Managing Editor Ulrich Langer, RICAM, Linz, Austria; Johannes Kepler University Linz, Austria
This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.
Описание: This pictorial manuscript is a step-by-step graphical illustrations for waveguides and devices modeling and computational physics simulation using COMSOL Multiphysics with Ray Optics, Wave Optics and AC/DC Electrostatics modules. All the example models investigated and visualized with the help of Finite Element Analysis are referenced from the standard USA undergraduate text on Optical Guided Waves and Devices by Richard Syms and John Cozens. The simulations include the use of geometrical ray tracings for point source and full electromagnetic waves source employing the Maxwell’s wave equations for plane wave input. Both 2D and 3D simulation results will help in visualize the electromagnetic field propagating inside the waveguides and devices. Readers without fundamental handle on optics modeling are suggested to read the Optics Modeling and Visualization with COMSOL Multiphysics: A step by step graphical instruction manuscripts for detailed discussion. These models may be expanded to post-graduate research and industrial photonics waveguides and devices development. There are 46 chapters of different 2D and 3D optical waveguides & devices structures modeled and simulated in Volume 1 and 2. Volume 1 models include 3D single mode optical fiber, planar waveguide, channel waveguide, longitudinal and transverse phase modulator, surface plasmon, optical square waveguide, tapered waveguide, FTIR beamsplitter in ray tracing and electromagnetic wave solvers, full prism coupler, halved prism coupler, plano convex overlay lens, overlay Luneburg lens, geodesic lens with control setup for resulted electric field comparison, corrugated gratings, transmission and reflection gratings, chirped grating lens, beam expander grating, grating coupler, chirped grating coupler, buried channel waveguide. Volume 2 models continue with the ridge channel waveguide, strip loaded channel waveguide, GaAs GaAlAs planar waveguide, GaAs GaAlAs heterostructure waveguide, radiation leaks at fiber bend, radiation leaks at waveguide bend, c-axis Calcite polarizer waveguide, integrated optic normal reflector, horn channel waveguide, Y-Junction waveguide, optical phase modulator, cut off modulator, electro optic Mach-Zehnder interferometer waveguide, parallel coupling waveguide, electro optic directional coupler, single polished fiber directional coupler, double polished fiber directional coupler, tunable-coupling strength of polished double fiber coupler, cross sectional coaxial fiber coupler, 2D directional coupler with tapered coupling, corrugated reflection gratings, optical fiber grating on half polished fiber coupler, and track-changing reflector with grating assisted-coupling fiber.
Описание: Presenting a greater understanding of nano- and bio-systems, this volume presents multiscale and multiphysics simulations that overcome limitations like time- and length-scales. Topics include nanoscale metal-insulator-metal junction, molecular memory, ionic transport, and more.
Автор: Moatamedi, M (chair Of Multiphysics University Of Tromso) Khawaja, Hassan A. Название: Finite element analysis ISBN: 1138320730 ISBN-13(EAN): 9781138320734 Издательство: Taylor&Francis Рейтинг: Цена: 27562.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides an introduction to finite element analysis as a tool for the solution of practical engineering problems; teach the principles of finite element analysis including the mathematical fundamentals as required; to how to construct an appropriate finite element model of a physical system, to interpret the results of the analysis.
Автор: Mohamed Haddar; Mohamed Slim Abbes; Jean-Yves Chol Название: Multiphysics Modelling and Simulation for Systems Design and Monitoring ISBN: 3319384252 ISBN-13(EAN): 9783319384252 Издательство: Springer Рейтинг: Цена: 32651.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In addition to providing a detailed description of the methods and their applications, the book also identifies new research issues, challenges and opportunities, thus providing researchers and practitioners with both technical information to support their daily work and a new source of inspiration for their future research.
Автор: Peksen, Murat Название: Multiphysics Modelling ISBN: 0128118245 ISBN-13(EAN): 9780128118245 Издательство: Elsevier Science Рейтинг: Цена: 15831.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Multiphysics Modelling: Materials, Components, and Systems focuses on situations where coupled phenomena involving a combination of thermal, fluid, and solid mechanics occur. Important fundamentals of the various physics that are required in multiphysics modelling are introduced and supported with practical problems. More advanced topics such as creep deformation, fatigue and fracture, multiphase flow or melting in porous media are tackled. 3D interactions in system architectures and energy systems such as batteries, reformer or fuel cells, and modelling of high-performance materials are exemplified. Important multiphysics modelling issues are highlighted. In addition to theory, solutions to problems, such as in linear and non-linear situations are addressed, as well as specific solutions for multiphysics modelling of fluid-solid, solid-solid and fluid-fluid interactions are given. Drawing on teaching experience, industry solutions, and the latest research, this book is the most complete guide to multiphysics modelling available for students and researchers in diverse science and engineering disciplines.
Автор: Ercan M. Dede; Jaewook Lee; Tsuyoshi Nomura Название: Multiphysics Simulation ISBN: 1447156390 ISBN-13(EAN): 9781447156390 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Alongside a concise review of the physics in a variety of electromechanical systems, this volume discusses topology optimization techniques for multiphysics systems and addresses challenges in thermal management and numerical techniques in electronics systems.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru