Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Fuzzy Machine Learning Algorithms for Remote Sensing Image Classification, Kumar, Anil , Kumar, A. Senthil , Upadhyay, Priy


Варианты приобретения
Цена: 15004.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kumar, Anil , Kumar, A. Senthil , Upadhyay, Priy   (Анил Кумар)
Название:  Fuzzy Machine Learning Algorithms for Remote Sensing Image Classification
Перевод названия: Анил Кумар: Алгоритмы нечеткого машинного обучения для классификации изображений дистанционного зонд
ISBN: 9780367355715
Издательство: Taylor&Francis
Классификация:
ISBN-10: 036735571X
Обложка/Формат: Hardcover
Страницы: 208
Вес: 0.57 кг.
Дата издания: 30.08.2020
Язык: English
Иллюстрации: 15 tables, black and white; 64 illustrations, black and white
Размер: 234 x 156 x 14
Читательская аудитория: Postgraduate, research & scholarly
Основная тема: Remote Sensing
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: This book covers the state of art image classification methods for discrimination of earth objects from remote sensing satellite data with an emphasis on fuzzy based learning methods including applications for preparing land cover classification outputs from actual satellite data. All algorithms are supported by in-house developed tool as SMIC.


GIS Algorithms

Автор: Xiao Ningchuan
Название: GIS Algorithms
ISBN: 1446274330 ISBN-13(EAN): 9781446274330
Издательство: Sage Publications
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The critical algorithms used in GIS are notoriously difficult to both teach and understand. This book address the problem by combining rigorous formal language with example case studies and student exercises.

GIS Algorithms

Автор: Ningchuan Xiao
Название: GIS Algorithms
ISBN: 1446274322 ISBN-13(EAN): 9781446274323
Издательство: Sage Publications
Рейтинг:
Цена: 24394.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The critical algorithms used in GIS are notoriously difficult to both teach and understand. This book address the problem by combining rigorous formal language with example case studies and student exercises.

Multi-resolution Image Fusion in Remote Sensing

Автор: Manjunath V. Joshi
Название: Multi-resolution Image Fusion in Remote Sensing
ISBN: 1108475124 ISBN-13(EAN): 9781108475129
Издательство: Cambridge Academ
Рейтинг:
Цена: 11246.00 р.
Наличие на складе: Поставка под заказ.

Описание: Presenting new advances in the field, this text will be a valuable reference for the students and researchers of image processing, multi-spectral imaging and remote sensing. It discusses tools and techniques of multi resolution image fusion with the necessary mathematical background.

Cellular Image Classification

Автор: Xiang Xu; Xingkun Wu; Feng Lin
Название: Cellular Image Classification
ISBN: 3319476289 ISBN-13(EAN): 9783319476285
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis.
First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical tweezer applications, including selective cell pick-up, pairing, grouping or separation, as well as rotation of cell dimers and clusters. Both translational dragging force and rotational torque in the experiments are in good accordance with the theoretical model. With a simple all-fiber configuration, and low peak irradiation to targeted cells, instrumentation of this optical chuck technology will provide a powerful tool in the ANA-IIF laboratories. Chapters focus on the optical, mechanical and computing systems for the clinical trials. Computer programs for GUI and control of the optical tweezers are also discussed.
to more discriminative local distance vector by searching for local neighbors of the local feature in the class-specific manifolds. Encoding and pooling the local distance vectors leads to salient image representation. Combined with the traditional coding methods, this method achieves higher classification accuracy.
Then, a rotation invariant textural feature of Pairwise Local Ternary Patterns with Spatial Rotation Invariant (PLTP-SRI) is examined. It is invariant to image rotations, meanwhile it is robust to noise and weak illumination. By adding spatial pyramid structure, this method captures spatial layout information. While the proposed PLTP-SRI feature extracts local feature, the BoW framework builds a global image representation. It is reasonable to combine them together to achieve impressive classification performance, as the combined feature takes the advantages of the two kinds of features in different aspects.
Finally, the authors design a Co-occurrence Differential Texton (CoDT) feature to represent the local image patches of HEp-2 cells. The CoDT feature reduces the information loss by ignoring the quantization while it utilizes the spatial relations among the differential micro-texton feature. Thus it can increase the discriminative power. A generative model adaptively characterizes the CoDT feature space of the training data. Furthermore, exploiting a discriminant representation allows for HEp-2 cell images based on the adaptive partitioned feature space. Therefore, the resulting representation is adapted to the classification task. By cooperating with linear Support Vector Machine (SVM) classifier, this framework can exploit the advantages of both generative and discriminative approaches for cellular image classification.
The book is written for those researchers who would like to develop their own programs, and the working MatLab codes are included for all the important algorithms presented. It can also be used as a reference book for graduate students and senior undergraduates in the area of biomedical imaging, image feature extraction, pattern recognition an
New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing

Автор: Leszek Rutkowski
Название: New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing
ISBN: 3642058205 ISBN-13(EAN): 9783642058202
Издательство: Springer
Рейтинг:
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The present vol- ume, based mostly on his own work, is a milestone in the devel- opment of soft computing, integrating various disciplines from the fields of information science and engineering.

Satellite Image Analysis: Clustering and Classification

Автор: Surekha Borra; Rohit Thanki; Nilanjan Dey
Название: Satellite Image Analysis: Clustering and Classification
ISBN: 9811364230 ISBN-13(EAN): 9789811364235
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Thanks to recent advances in sensors, communication and satellite technology, data storage, processing and networking capabilities, satellite image acquisition and mining are now on the rise. In turn, satellite images play a vital role in providing essential geographical information. Highly accurate automatic classification and decision support systems can facilitate the efforts of data analysts, reduce human error, and allow the rapid and rigorous analysis of land use and land cover information. Integrating Machine Learning (ML) technology with the human visual psychometric can help meet geologists’ demands for more efficient and higher-quality classification in real time.
This book introduces readers to key concepts, methods and models for satellite image analysis; highlights state-of-the-art classification and clustering techniques; discusses recent developments and remaining challenges; and addresses various applications, making it a valuable asset for engineers, data analysts and researchers in the fields of geographic information systems and remote sensing engineering.
Remote Sensing Image Classification in R

Автор: Kamusoko Courage
Название: Remote Sensing Image Classification in R
ISBN: 9811380112 ISBN-13(EAN): 9789811380112
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers an introduction to remotely sensed image processing and classification in R using machine learning algorithms. It also provides a concise and practical reference tutorial, which equips readers to immediately start using the software platform and R packages for image processing and classification.This book is divided into five chapters. Chapter 1 introduces remote sensing digital image processing in R, while chapter 2 covers pre-processing. Chapter 3 focuses on image transformation, and chapter 4 addresses image classification. Lastly, chapter 5 deals with improving image classification.R is advantageous in that it is open source software, available free of charge and includes several useful features that are not available in commercial software packages. This book benefits all undergraduate and graduate students, researchers, university teachers and other remote- sensing practitioners interested in the practical implementation of remote sensing in R.

Spectral-Spatial Classification of Hyperspectral Remote Sensing Images

Автор: J?n Atli Benediktsson and Pedram Ghamisi
Название: Spectral-Spatial Classification of Hyperspectral Remote Sensing Images
ISBN: 1608078124 ISBN-13(EAN): 9781608078127
Издательство: Artech House
Рейтинг:
Цена: 14230.00 р.
Наличие на складе: Нет в наличии.

Описание: This comprehensive new resource brings you up to date on recent developments in the classification of hyperspectral images using both spectral and spatial information, including advanced statistical approaches and methods. The inclusion of spatial information to traditional approaches for hyperspectral classification has been one of the most active and relevant innovative lines of research in remote sensing during recent years. This book gives you insight into several important challenges when performing hyperspectral image classification related to the imbalance between high dimensionality and limited availability of training samples, or the presence of mixed pixels in the data. This book also shows you how to integrate spatial and spectral information in order to take advantage of the benefits that both sources of information provide

Machine Vision and Advanced Image Processing in Remote Sensing

Автор: Ioannis Kanellopoulos; Graeme G. Wilkinson; Theo M
Название: Machine Vision and Advanced Image Processing in Remote Sensing
ISBN: 3642642608 ISBN-13(EAN): 9783642642609
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия