Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Numerical Methods for Navier-Stokes Equations, Birken, Philipp


Варианты приобретения
Цена: 22202.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Birken, Philipp
Название:  Numerical Methods for Navier-Stokes Equations
ISBN: 9780367457754
Издательство: Taylor&Francis
Классификация:






ISBN-10: 036745775X
Обложка/Формат: Hardback
Страницы: 250
Вес: 0.61 кг.
Дата издания: 30.09.2020
Серия: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
Язык: English
Иллюстрации: 54 line drawings, black and white; 54 illustrations, black and white
Размер: 161 x 242 x 22
Читательская аудитория: Tertiary education (us: college)
Основная тема: Mathematical Numerical Analysis
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: This book is written to give both mathematicians and engineers an overview of the state of the art in the field, as well as of new developments. The focus is on methods for the compressible Navier-Stokes equations, the solutions of which can exhibit shocks, boundary layers and turbulence.


The Navier-Stokes Equations Theory and Numerical Methods

Автор: John G. Heywood; Kyuya Masuda; Reimund Rautmann; V
Название: The Navier-Stokes Equations Theory and Numerical Methods
ISBN: 3540527702 ISBN-13(EAN): 9783540527701
Издательство: Springer
Рейтинг:
Цена: 4884.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Contains articles on a wide variety of aspects of Navier-Stokes equations. This book surveys the subject via open problems and deals with the interplay between theory and numerical analysis.

Numerical Solution of the Incompressible Navier-Stokes Equations

Автор: L. Quartapelle
Название: Numerical Solution of the Incompressible Navier-Stokes Equations
ISBN: 3034896891 ISBN-13(EAN): 9783034896894
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents different formulations of the equations governing incompressible viscous flows, in the form needed for developing numerical solution procedures.

Numerical Solution of the Navier-Stokes Equations at High Reynolds Numbers

Автор: Shestakov A. I.
Название: Numerical Solution of the Navier-Stokes Equations at High Reynolds Numbers
ISBN: 1288822650 ISBN-13(EAN): 9781288822652
Издательство: Неизвестно
Рейтинг:
Цена: 10658.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

The Navier-Stokes Equations II - Theory and Numerical Methods

Автор: John G. Heywood; Kyuya Masuda; Reimund Rautmann; V
Название: The Navier-Stokes Equations II - Theory and Numerical Methods
ISBN: 3540562613 ISBN-13(EAN): 9783540562610
Издательство: Springer
Рейтинг:
Цена: 4884.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Tani: Evolution free boundary problemfor equations of motion of viscous compressible barotropicliquid.- W. Miyakawa:On some coerciveestimates for the Stokes problem in unbounded domains.- R. v.Wahl:Decomposition of solenoidal fields into poloidal fields,toroidal fields and the mean flow.

Numerical Solution of the Incompressible Navier-Stokes Equations

Автор: L. Quartapelle
Название: Numerical Solution of the Incompressible Navier-Stokes Equations
ISBN: 3764329351 ISBN-13(EAN): 9783764329358
Издательство: Springer
Рейтинг:
Цена: 18161.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents different formulations of the equations governing incompressible viscous flows, in the form needed for developing numerical solution procedures. This book discusses the conditions required to satisfy the no-slip boundary conditions in the various formulations. For each formulation, it provides a statement of the mathematical problem.

Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations

Автор: Andreas Prohl
Название: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations
ISBN: 3519027232 ISBN-13(EAN): 9783519027232
Издательство: Springer
Рейтинг:
Цена: 9141.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The numerical treatment of the evolutionary incompressible Navier-Stokes equations, which determine many practicaIly relevant fluid flows, is an area of considerable interest for industrial as weIl as scientific applications. Im- portant for drawing furt her conclusions for the behavior of certain flows in diverse disciplines such as (astro-)physics, engineering, meteorology, oceanog- raphy, or biology is a reliable, robust and efficient numerical model. The goal of computing highly complex flows requires the development of sophisticated algorithms. In general, numerical schemes which do not cause high computa- tional cost, often suffer from stability or reliability problems and vice versa. So, it demands a numerical and physical a-priori knowledge from the user in order to select the "best fitting algorithm" for a particular problem under consideration. The use of knowledge about physical phenomena appearing in a specific problem aIlows the relaxation of some robustness-conditions that otherwise need to be imposed on the numerical scheme in order to ensure reliability with respect to the convergence behavior. To this end, this leads to permittance of numerical models simulating continuous flows which do not satisfy severe stability restrictions that lead to robust schemes, with the advantage of lower computational costs necessary to obtain the same accu- racy. A major part of this book is devoted to such schemes that are of great importance: classical projection methods 01 high er order and nonstationary quasi-compressibility methods.

Finite element methods for Navier-Stokes equations : theory and algorithms

Автор: Vivette Girault; Pierre-Arnaud Raviart
Название: Finite element methods for Navier-Stokes equations : theory and algorithms
ISBN: 3642648886 ISBN-13(EAN): 9783642648885
Издательство: Springer
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics.

In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen- sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob- lems although the time-dependent problems are of fundamental importance.

This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view.

Also, we have neither discussed the implemen- tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].

Implementation of Finite Element Methods for Navier-Stokes Equations

Автор: F. Thomasset
Название: Implementation of Finite Element Methods for Navier-Stokes Equations
ISBN: 364287049X ISBN-13(EAN): 9783642870491
Издательство: Springer
Рейтинг:
Цена: 11101.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In structure mechanics analysis, finite element methods are now well estab- lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap- proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require- ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977. (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients, l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.

Navier—Stokes Equations and Related Nonlinear Problems

Автор: Ad?lia Sequeira
Название: Navier—Stokes Equations and Related Nonlinear Problems
ISBN: 148991417X ISBN-13(EAN): 9781489914170
Издательство: Springer
Рейтинг:
Цена: 22203.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume contains the Proceedings of the Third International Conference on Navier-Stokes Equations and Related Nonlinear Problems. In addition to the editor, the organizers were Carlos Albuquerque (FC, University of Lisbon), Casimiro Silva (University of Madeira) and Juha Videman (1ST, Technical University of Lisbon).

Solutions to Three-Dimensional Thin-Layer Navier-Stokes Equations in Rotating Coordinates for Flow Through Turbomachinery

Автор: Ghosh Amrit Raj
Название: Solutions to Three-Dimensional Thin-Layer Navier-Stokes Equations in Rotating Coordinates for Flow Through Turbomachinery
ISBN: 1288910649 ISBN-13(EAN): 9781288910649
Издательство: Неизвестно
Рейтинг:
Цена: 10658.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

An Introduction to the Mathematical Theory of the Navier-Stokes Equations

Автор: Giovanni Galdi
Название: An Introduction to the Mathematical Theory of the Navier-Stokes Equations
ISBN: 1461253667 ISBN-13(EAN): 9781461253662
Издательство: Springer
Рейтинг:
Цена: 15506.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is the second of four volumes on the Navier-Stokes equations, specifically on Nonlinear Stationary Problems. The work is an up-to-date and detailed investigation of these problems for motions in domains of different types: bounded, exterior and domain with noncompact boundaries.

Navier–Stokes Equations on R3 ? [0, T]

Автор: Stenger
Название: Navier–Stokes Equations on R3 ? [0, T]
ISBN: 3319275240 ISBN-13(EAN): 9783319275246
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this monograph, leading researchers in the world ofnumerical analysis, partial differential equations, and hard computationalproblems study the properties of solutions of the Navier–Stokes partial differential equations on (x, y, z,t) ? ?3 ? [0, T]. Initially converting the PDE to asystem of integral equations, the authors then describe spaces A of analytic functions that housesolutions of this equation, and show that these spaces of analytic functionsare dense in the spaces S of rapidlydecreasing and infinitely differentiable functions. This method benefits fromthe following advantages: The functions of S are nearly always conceptual rather than explicit Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties When methods of approximation are applied to functions of A they converge at an exponential rate, whereas methods of approximation applied to the functions of S converge only at a polynomial rate Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more efficient method of solution, including accurate error boundsFollowing the proofs of denseness, the authors prove theexistence of a solution of the integral equations in the space of functions A ? ?3 ? [0, T], and provide an explicit novelalgorithm based on Sinc approximation and Picard–like iteration for computingthe solution. Additionally, the authors include appendices that provide acustom Mathematica program for computing solutions based on the explicitalgorithmic approximation procedure, and which supply explicit illustrations ofthese computed solutions.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия