Neutrosophic Set In Medical Image Analysis, Guo, Yanhui
Автор: K. Kamalanand, B. Thayumanavan, P. Mannar Jawahar Название: Computational Techniques for Dental Image Analysis ISBN: 1522562435 ISBN-13(EAN): 9781522562436 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 35402.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With the technology innovations dentistry has witnessed in all its branches over the past three decades, the need for more precise diagnostic tools and advanced imaging methods has become mandatory across the industry. Recent advancements to imaging systems are playing an important role in efficient diagnoses, treatments, and surgeries.Computational Techniques for Dental Image Analysis provides innovative insights into computerized methods for automated analysis. The research presented within this publication explores pattern recognition, oral pathologies, and diagnostic processing. It is designed for dentists, professionals, medical educators, medical imaging technicians, researchers, oral surgeons, and students, and covers topics centered on easier assessment of complex cranio-facial tissues and the accurate diagnosis of various lesions at early stages.
Автор: Nixon Название: Medical Image Understanding and Analysis ISBN: 3319959204 ISBN-13(EAN): 9783319959207 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The papers are organized in topical sections on liver analysis, medical image analysis, texture and image analysis, MRI: applications and techniques, segmentation in medical images, CT: learning and planning, ocular imaging analysis, applications of medical image analysis.
Автор: Siddhartha Bhattacharyya; Debanjan Konar; Jan Plat Название: Hybrid Machine Intelligence for Medical Image Analysis ISBN: 9811389292 ISBN-13(EAN): 9789811389290 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks.
Описание: This book constitutes the refereed joint proceedings of the Second International Workshop on Graphs in Biomedical Image Analysis, GRAIL 2018 and the First International Workshop on Integrating Medical Imaging and Non-Imaging Modalities, Beyond MIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 6 full papers presented at GRAIL 2018 and the 5 full papers presented at BeYond MIC 2018 were carefully reviewed and selected. The GRAIL papers cover a wide range of develop graph-based models for the analysis of biomedical images and encourage the exploration of graph-based models for difficult clinical problems within a variety of biomedical imaging contexts. The Beyond MIC papers cover topics of novel methods with significant imaging and non-imaging components, addressing practical applications and new datasets
Автор: Huazhu Fu; Mona K. Garvin; Tom MacGillivray; Yanwu Название: Ophthalmic Medical Image Analysis ISBN: 3030329550 ISBN-13(EAN): 9783030329556 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Dictionary Learning Informed Deep Neural Network with Application to OCT Images.- Structure-aware Noise Reduction Generative Adversarial Network for Optical Coherence Tomography Image.- Region-Based Segmentation of Capillary Density in Optical Coherence Tomography Angiography.- An amplified-target loss approach for photoreceptor layer segmentation in pathological OCT scans.- Foveal avascular zone segmentation in clinical routine fluorescein angiographies using multitask learning.- Guided M-Net for High-resolution Biomedical Image Segmentation with Weak Boundaries.- 3D-CNN for Glaucoma Detection using Optical Coherence Tomography.- Semi-supervised Adversarial Learning for Diabetic Retinopathy Screening.- Shape Decomposition of Foveal Pit Morphology using Scan Geometry Corrected OCT.- U-Net with spatial pyramid pooling for drusen segmentation in optical coherence tomography.- Deriving Visual Cues from Deep Learning to Achieve Subpixel Cell Segmentation in Adaptive Optics Retinal Images.- Robust Optic Disc Localization by Large Scale Learning.- The Channel Attention based Context Encoder Network for Inner Limiting Membrane Detections.- Fundus Image based Retinal Vessel Segmentation Utilizing A Fast and Accurate Fully Convolutional Network.- Network pruning for OCT image classification.- An improved MPB-CNN segmentation method for edema area and neurosensory retinal detachment in SD-OCT images.- Encoder-Decoder Attention Network for Lesion Segmentation of Diabetic Retinopathy.- Multi-Discriminator Generative Adversarial Networks for improved thin retinal vessel segmentation.- Fovea Localization in Fundus Photographs by Faster R-CNN with Physiological Prior.- Aggressive Posterior Retinopathy of Prematurity Automated Diagnosis via a Deep Convolutional Network.- Automated Stage Analysis of Retinopathy of Prematurity Using Joint Segmentation and Multi-Instance Learning.- Retinopathy Diagnosis using Semi-supervised Multi-channel Generative Adversarial Network.
Автор: Danail Stoyanov; Zeike Taylor; Francesco Ciompi; Y Название: Computational Pathology and Ophthalmic Medical Image Analysis ISBN: 3030009483 ISBN-13(EAN): 9783030009489 Издательство: Springer Рейтинг: Цена: 9222.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed joint proceedings of the First International Workshop on Computational Pathology, COMPAY 2018, and the 5th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018.The 19 full papers (out of 25 submissions) presented at COMPAY 2018 and the 21 full papers (out of 31 submissions) presented at OMIA 2018 were carefully reviewed and selected. The COMPAY papers focus on artificial intelligence and deep learning. The OMIA papers cover various topics in the field of ophthalmic image analysis.
Автор: Mar?a Vald?s Hern?ndez; V?ctor Gonz?lez-Castro Название: Medical Image Understanding and Analysis ISBN: 3319609637 ISBN-13(EAN): 9783319609638 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 21st Annual Conference on Medical Image Understanding and Analysis, MIUA 2017, held in Edinburgh, UK, in July 2017. The 82 revised full papers presented were carefully reviewed and selected from 105 submissions. The papers are organized in topical sections on retinal imaging, ultrasound imaging, cardiovascular imaging, oncology imaging, mammography image analysis, image enhancement and alignment, modeling and segmentation of preclinical, body and histological imaging, feature detection and classification. The chapters 'Model-Based Correction of Segmentation Errors in Digitised Histological Images' and 'Unsupervised Superpixel-Based Segmentation of Histopathological Images with Consensus Clustering' are open access under a CC BY 4.0 license.
Автор: Zhou, Kevin Название: Deep Learning for Medical Image Analysis ISBN: 0128104082 ISBN-13(EAN): 9780128104088 Издательство: Elsevier Science Рейтинг: Цена: 16505.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas.
Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis.
Автор: Om Prakash Verma; Sudipta Roy; Subhash Chandra Pan Название: Advancement of Machine Intelligence in Interactive Medical Image Analysis ISBN: 9811510997 ISBN-13(EAN): 9789811510991 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book discusses major technical advances and research findings in the field of machine intelligence in medical image analysis. This book provides insights into the basic science involved in processing, analysing, and utilising all aspects of advanced computational intelligence in medical decision-making based on medical imaging.
Автор: Allan Hanbury; Henning M?ller; Georg Langs Название: Cloud-Based Benchmarking of Medical Image Analysis ISBN: 3319496425 ISBN-13(EAN): 9783319496429 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: VISCERAL: Evaluation-as-a-Service for Medical Imaging.- Using the Cloud as a Platform for Evaluation and Data Preparation.- Ethical and Privacy Aspects of Using Medical Image Data.- Annotating Medical Image Data.- Datasets created in VISCERAL.- Evaluation Metrics for Medical Organ Segmentation and Lesion Detection.- VISCERAL Anatomy Benchmarks for Organ Segmentation and Landmark Localisation: Tasks and Results.- Retrieval of Medical Cases for Diagnostic Decisions: VISCERAL Retrieval Benchmark.- Automatic Atlas-Free Multi-Organ Segmentation of Contrast-Enhanced CT Scans.- Multi-organ Segmentation Using Coherent Propagating Level Set Method Guided by Hierarchical Shape Priors and Local Phase Information.- Automatic Multi-organ Segmentation using Hierarchically-Registered Probabilistic Atlases.- Multi-Atlas Segmentation Using Robust Feature-Based Registration.- Combining Radiology Images and Clinical Meta-data for Multimodal Medical Case-based Retrieval.- Text and Content-based Medical Image Retrieval in the VISCERAL Retrieval Benchmark.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru