Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Deep Learning-Based Approaches for Sentiment Analysis, Basant Agarwal, Richi Nayak


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Basant Agarwal, Richi Nayak
Название:  Deep Learning-Based Approaches for Sentiment Analysis
ISBN: 9789811512155
Издательство: Springer
Классификация:





ISBN-10: 9811512159
Обложка/Формат: Hardcover
Страницы: 319
Вес: 0.66 кг.
Дата издания: 25.01.2020
Серия: Algorithms for intelligent systems
Язык: English
Издание: 1st ed. 2020
Иллюстрации: Xii, 319 p.
Размер: 234 x 156 x 19
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.


Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks

Автор: Arindam Chaudhuri
Название: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks
ISBN: 9811374732 ISBN-13(EAN): 9789811374739
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.

Prominent Feature Extraction for Sentiment Analysis

Автор: Basant Agarwal; Namita Mittal
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319253417 ISBN-13(EAN): 9783319253411
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

Compression-Based Methods of Statistical Analysis and Prediction of Time Series

Автор: Boris Ryabko; Jaakko Astola; Mikhail Malyutov
Название: Compression-Based Methods of Statistical Analysis and Prediction of Time Series
ISBN: 3319322516 ISBN-13(EAN): 9783319322513
Издательство: Springer
Рейтинг:
Цена: 10760.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In the meantime, it was realized that they can be used for solving important problems of prediction and statistical analysis of time series, and this book describes recent results in this area.The first chapter introduces and describes the application of universal codes to prediction and the statistical analysis of time series;

System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches

Автор: S.G. Tzafestas; Madan Singh; G?nther Schmidt
Название: System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches
ISBN: 940108243X ISBN-13(EAN): 9789401082433
Издательство: Springer
Рейтинг:
Цена: 27944.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Agent-Based Approaches in Economic and Social Complex Systems VIII

Автор: Yutaka Nakai; Yuhsuke Koyama; Takao Terano
Название: Agent-Based Approaches in Economic and Social Complex Systems VIII
ISBN: 4431552359 ISBN-13(EAN): 9784431552352
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Agent-based modeling/simulation is an emergent approach to the analysis of social and economic systems. This book includes selected papers presented at the Eighth International Workshop on Agent-Based Approaches in Economic and Social Complex Systems held in Tokyo, Japan, in 2013.

Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion

Автор: Xingjian Jing; Ziqiang Lang
Название: Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion
ISBN: 3319383035 ISBN-13(EAN): 9783319383033
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years.

Analysis and Synthesis for Interval Type-2 Fuzzy-Model-Based Systems

Автор: Hongyi Li; Ligang Wu; Hak-Keung Lam; Yabin Gao
Название: Analysis and Synthesis for Interval Type-2 Fuzzy-Model-Based Systems
ISBN: 9811005923 ISBN-13(EAN): 9789811005923
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances.

Fractal-Based Methods in Analysis

Автор: Herb Kunze; Davide La Torre; Franklin Mendivil; Ed
Название: Fractal-Based Methods in Analysis
ISBN: 1489973745 ISBN-13(EAN): 9781489973740
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Fractal-based methods are at the heart of modeling the behavior of phenomena at varying scales. This volume collates techniques for using IFS fractals, including the very latest cutting-edge methods, from more than 20 years of research in this area.

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems

Автор: M. Reza Rahimi Tabar
Название: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems
ISBN: 3030184714 ISBN-13(EAN): 9783030184711
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation?Here, the term 'non-parametrically' exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data.The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results.The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations.The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.

Multivariate Algorithms and Information-Based Complexity

Автор: Fred J. Hickernell, Peter Kritzer
Название: Multivariate Algorithms and Information-Based Complexity
ISBN: 3110633116 ISBN-13(EAN): 9783110633115
Издательство: Walter de Gruyter
Цена: 19330.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The series is devoted to the publication of high-level monographs, surveys and proceedings which cover the whole spectrum of computational and applied mathematics.

The books of this series are addressed to both specialists and advanced students.

Interested authors may submit book proposals to the Managing Editor or to any member of the Editorial Board.

Managing Editor
Ulrich Langer, RICAM, Linz, Austria; Johannes Kepler University Linz, Austria

Editorial Board
Hansjorg Albrecher, University of Lausanne, Switzerland
Ronald H. W. Hoppe, University of Houston, USA
Karl Kunisch, RICAM, Linz, Austria; University of Graz, Austria
Harald Niederreiter, RICAM, Linz, Austria
Otmar Scherzer, RICAM, Linz, Austria; University of Vienna, Austria
Christian Schmeiser, University of Vienna, Austria


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия