Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Multi-Agent Coordination: A Reinforcement Learning Approach, Sadhu Arup Kumar, Konar Amit


Варианты приобретения
Цена: 17258.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sadhu Arup Kumar, Konar Amit
Название:  Multi-Agent Coordination: A Reinforcement Learning Approach
Перевод названия: Аруп Кумар Садху, Амит Конар: Многофакторная координация: Подход к обучению с закреплением
ISBN: 9781119699033
Издательство: Wiley
Классификация:
ISBN-10: 1119699037
Обложка/Формат: Hardcover
Страницы: 320
Вес: 0.67 кг.
Дата издания: 27.10.2020
Серия: Wiley - ieee
Язык: English
Размер: 22.91 x 15.19 x 1.91 cm
Читательская аудитория: Professional & vocational
Подзаголовок: A reinforcement learning approach
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание:

Discover the latest developments in multi-robot coordination techniques with this insightful and original resource

Multi-Agent Coordination: A Reinforcement Learning Approach delivers a comprehensive, insightful, and unique treatment of the development of multi-robot coordination algorithms with minimal computational burden and reduced storage requirements when compared to traditional algorithms. The accomplished academics, engineers, and authors provide readers with both a high-level introduction to, and overview of, multi-robot coordination, and in-depth analyses of learning-based planning algorithms.

Youll learn about how to accelerate the exploration of the team-goal and alternative approaches to speeding up the convergence of TMAQL by identifying the preferred joint action for the team. The authors also propose novel approaches to consensus Q-learning that address the equilibrium selection problem and a new way of evaluating the threshold value for uniting empires without imposing any significant computation overhead. Finally, the book concludes with an examination of the likely direction of future research in this rapidly developing field.

Readers will discover cutting-edge techniques for multi-agent coordination, including:

  • An introduction to multi-agent coordination by reinforcement learning and evolutionary algorithms, including topics like the Nash equilibrium and correlated equilibrium
  • Improving convergence speed of multi-agent Q-learning for cooperative task planning
  • Consensus Q-learning for multi-agent cooperative planning
  • The efficient computing of correlated equilibrium for cooperative q-learning based multi-agent planning
  • A modified imperialist competitive algorithm for multi-agent stick-carrying applications

Perfect for academics, engineers, and professionals who regularly work with multi-agent learning algorithms, Multi-Agent Coordination: A Reinforcement Learning Approach also belongs on the bookshelves of anyone with an advanced interest in machine learning and artificial intelligence as it applies to the field of cooperative or competitive robotics.



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия