Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning with Tensorflow, Second Edition, Chris Mattmann A.


Сейчас книги нет в продаже.
Возможно появится в будущем.

Автор: Chris Mattmann A.
Название:  Machine Learning with Tensorflow, Second Edition
ISBN: 9781617297717
Издательство: Manning Publications
Классификация:
ISBN-10: 1617297712
Обложка/Формат: Paperback
Страницы: 350
Вес: 0.74 кг.
Дата издания: 29.12.2020
Язык: English
Размер: 231 x 185 x 25
Рейтинг:
Поставляется из: Англии
Описание: Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library.

Summary
Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. New and revised content expands coverage of core machine learning algorithms, and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Supercharge your data analysis with machine learning ML algorithms automatically improve as they process data, so results get better over time. You dont have to be a mathematician to use ML: Tools like Googles TensorFlow library help with complex calculations so you can focus on getting the answers you need.

About the book
Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. Youll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10.

Whats inside

Machine Learning with TensorFlow
Choosing the best ML approaches
Visualizing algorithms with TensorBoard
Sharing results with collaborators
Running models in Docker

About the reader
Requires intermediate Python skills and knowledge of general algebraic concepts like vectors and matrices. Examples use the super-stable 1.15.x branch of TensorFlow and TensorFlow 2.x.

About the author
Chris Mattmann is the Division Manager of the Artificial Intelligence, Analytics, and Innovation Organization at NASA Jet Propulsion Lab. The first edition of this book was written by Nishant Shukla with Kenneth Fricklas.

Table of Contents

PART 1 - YOUR MACHINE-LEARNING RIG

1 A machine-learning odyssey

2 TensorFlow essentials

PART 2 - CORE LEARNING ALGORITHMS

3 Linear regression and beyond

4 Using regression for call-center volume prediction

5 A gentle introduction to classification

6 Sentiment classification: Large movie-review dataset

7 Automatically clustering data

8 Inferring user activity from Android accelerometer data

9 Hidden Markov models

10 Part-of-speech tagging and word-sense disambiguation

PART 3 - THE NEURAL NETWORK PARADIGM

11 A peek into autoencoders

12 Applying autoencoders: The CIFAR-10 image dataset

13 Reinforcement learning

14 Convolutional neural networks

15 Building a real-world CNN: VGG-Face ad VGG-Face Lite

16 Recurrent neural networks

17 LSTMs and automatic speech recognition

18 Sequence-to-sequence models for chatbots

19 Utility landscape



      Старое издание
Machine Learning with Tensorflow

Автор: Shukla
Название: Machine Learning with Tensorflow
ISBN: 1617293873 ISBN-13(EAN): 9781617293870
Издательство: Pearson Education
Цена: 7126.00 р.
Наличие на складе: Есть у поставщикаПоставка под заказ.
Описание:

Summary

Machine Learning with TensorFlow gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

TensorFlow, Google's library for large-scale machine learning, simplifies often-complex computations by representing them as graphs and efficiently mapping parts of the graphs to machines in a cluster or to the processors of a single machine.

About the Book

Machine Learning with TensorFlow gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python. You'll learn the basics by working with classic prediction, classification, and clustering algorithms. Then, you'll move on to the money chapters: exploration of deep-learning concepts like autoencoders, recurrent neural networks, and reinforcement learning. Digest this book and you will be ready to use TensorFlow for machine-learning and deep-learning applications of your own.

What's Inside

  • Matching your tasks to the right machine-learning and deep-learning approaches
  • Visualizing algorithms with TensorBoard
  • Understanding and using neural networks

About the Reader

Written for developers experienced with Python and algebraic concepts like vectors and matrices.

About the Author

Author Nishant Shukla is a computer vision researcher focused on applying machine-learning techniques in robotics.

Senior technical editor, Kenneth Fricklas, is a seasoned developer, author, and machine-learning practitioner.

Table of Contents

    PART 1 - YOUR MACHINE-LEARNING RIG
  1. A machine-learning odyssey
  2. TensorFlow essentials
  3. PART 2 - CORE LEARNING ALGORITHMS
  4. Linear regression and beyond
  5. A gentle introduction to classification
  6. Automatically clustering data
  7. Hidden Markov models
  8. PART 3 - THE NEURAL NETWORK PARADIGM
  9. A peek into autoencoders
  10. Reinforcement learning
  11. Convolutional neural networks
  12. Recurrent neural networks
  13. Sequence-to-sequence models for chatbots
  14. Utility landscape



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия