Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Handbook Of Deep Learning In Biomedical Engineering, Balas, Valentina Emilia


Варианты приобретения
Цена: 22401.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Balas, Valentina Emilia
Название:  Handbook Of Deep Learning In Biomedical Engineering
Перевод названия: Валентина Эмилия Балас: Справочник по глубокому обучению в области биомедицинской инженерии
ISBN: 9780128230145
Издательство: Elsevier Science
Классификация:
ISBN-10: 0128230142
Обложка/Формат: Paperback
Страницы: 320
Вес: 0.63 кг.
Дата издания: 17.11.2020
Язык: English
Размер: 23.50 x 19.05 x 1.70 cm
Подзаголовок: Techniques and applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

Deep learning (DL) is a method of machine learning, running over artificial neural networks, that uses multiple layers to extract high-level features from large amounts of raw data. DL methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of DL and its applications in the field of biomedical engineering. DL has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. DL provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and artificial intelligence techniques such as DL and convolutional neural networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use DL include computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic particle imaging, electroencephalography/magnetoencephalography (EE/MEG), optical microscopy and tomography, photoacoustic tomography, electron tomography, and atomic force microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of DL applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimers, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), tumor prediction, and translational multimodal imaging analysis.




Principles of Biomedical Informatics, 2 ed

Автор: Kalet Ira J.
Название: Principles of Biomedical Informatics, 2 ed
ISBN: 0124160190 ISBN-13(EAN): 9780124160194
Издательство: Elsevier Science
Рейтинг:
Цена: 12462.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a treatment of the deep computational ideas at the foundation of the field. This book includes exercises at the end of each chapter, ideas for student projects, and a number of new topics, such as: tree structured data, interval trees, and time-oriented medical data and their use.

Handbook of Optical Biomedical Diagnostics, Second Edition: 2-Volume Set (Vols. PM262 and PM263)

Название: Handbook of Optical Biomedical Diagnostics, Second Edition: 2-Volume Set (Vols. PM262 and PM263)
ISBN: 1628419091 ISBN-13(EAN): 9781628419092
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 16177.00 р.
Наличие на складе: Нет в наличии.

Описание: To encompass all current methods, this updated handbook has been expanded into two volumes. Volume 1 features eleven chapters, five of which focus on the fundamental physics of light propagation in turbid media such as biological tissues. The six following chapters introduce near-infrared techniques for the optical study of tissues and provide a snapshot of current applications and developments.

Handbook of Bioelectronics

Название: Handbook of Bioelectronics
ISBN: 1107040833 ISBN-13(EAN): 9781107040830
Издательство: Cambridge Academ
Рейтинг:
Цена: 37699.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A wide-ranging view of the state of the art in modern bioelectronics, with real-world examples, step-by-step design details, and hints and tips from the pioneers themselves. All aspects of modern bioelectronics are covered, providing an authoritative summary of the field and a perfect foundation for future developments in distributed diagnostic devices.

Handbook of Biomedical Image Analysis

Автор: David Wilson; Swamy Laxminarayan
Название: Handbook of Biomedical Image Analysis
ISBN: 1489996494 ISBN-13(EAN): 9781489996497
Издательство: Springer
Рейтинг:
Цена: 53106.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Our goal is to develop automated methods for the segmentation of thr- dimensional biomedical images. Here, we describe the segmentation of c- focal microscopy images of bee brains (20 individuals) by registration to one or several atlas images. Registration is performed by a highly parallel imp- mentation of an entropy-based nonrigid registration algorithm using B-spline transformations. We present and evaluate different methods to solve the cor- spondence problem in atlas based registration. An image can be segmented by registering it to an individual atlas, an average atlas, or multiple atlases. When registering to multiple atlases, combining the individual segmentations into a ?nalsegmentationcanbeachievedbyatlasselection,ormulticlassi?erdecision fusion. Wedescribeallthesemethodsandevaluatethesegmentationaccuracies that they achieve by performing experiments with electronic phantoms as well as by comparing their outputs to a manual gold standard. The present work is focused on the mathematical and computational t- ory behind a technique for deformable image registration termed Hyperelastic Warping, and demonstration of the technique via applications in image regist- tion and strain measurement. The approach combines well-established prin- ples of nonlinear continuum mechanics with forces derived directly from thr- dimensional image data to achieve registration. The general approach does not require the de?nition of landmarks, ?ducials, or surfaces, although it can - commodate these if available. Representative problems demonstrate the robust and ?exible nature of the approach. Three-dimensional registration methods are introduced for registering MRI volumes of the pelvis and prostate. The chapter ?rst reviews the applications, xi xii Preface challenges, and previous methods of image registration in the prostate.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия