Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Dynamics of Neural Networks: A Mathematical and Clinical Approach, Van Putten Michel J. a. M.


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Van Putten Michel J. a. M.
Название:  Dynamics of Neural Networks: A Mathematical and Clinical Approach
ISBN: 9783662611821
Издательство: Springer
Классификация:






ISBN-10: 3662611821
Обложка/Формат: Hardcover
Страницы: 259
Вес: 0.57 кг.
Дата издания: 01.02.2021
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 100 tables, color; 40 illustrations, color; 98 illustrations, black and white; xvii, 259 p. 138 illus., 40 illus. in color.; 100 tables, color; 40 ill
Размер: 23.39 x 15.60 x 1.75 cm
Читательская аудитория: Professional & vocational
Подзаголовок: A mathematical and clinical approach
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book treats essentials from neurophysiology (Hodgkin-Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis).


Introduction to Methods of Approximation in Physics and Astronomy

Автор: Van Putten Maurice H. P. M.
Название: Introduction to Methods of Approximation in Physics and Astronomy
ISBN: 9811097429 ISBN-13(EAN): 9789811097423
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Preface

Part I Preliminaries

1. Complex numbers

1.1 Quotients of complex numbers

1.2 Roots of complex numbers

1.3 Sequences and Euler's constant

1.4 Power series and radius of convergence

1.5 Minkowski spacetime

1.6 The logarithm and winding number

1.7 Branch cuts for z

1.8 Branch cuts for z 1/p

1.9 Exercises

2. Complex function theory

2.1 Analytic functions

2.2 Cauchy's Integral Formula

2.3 Evaluation of a real integral

2.4 Residue theorem

2.5 Morera's theorem

2.6 Liouville's theorem

2.7 Poisson kernel

2.8 Flux and circulation

2.9 Examples of potential flows

2.10Exercises

3. Vectors and linear algebra

3.1 Introduction

3.2 Inner and outer products

3.3 Angular momentum vector

3.4 Elementary transformations in the plane

3.5 Matrix algebra

3.6 Eigenvalue problems

3.7 Unitary matrices and invariants

3.8 Hermitian structure of Minkowski spacetime

3.9 Eigenvectors of Hermitian matrices

3.10QR factorization

3.11Exercises

4. Linear partial differential equations

4.1 Hyperbolic equations

4.2 Diffusion equation

4.3 Elliptic equations

4.4 Characteristic of hyperbolic systems

4.5 Weyl equation

4.6 Exercises

Part II Methods of approximation

5. Projections and minimal distances

5.1 Vectors and distances

5.2 Projections of vectors

5.3 Snell's law and Fermat's principle

5.4 Fitting data by least squares

5.5 Gauss-Legendre quadrature

5.6 Exercises

6. Spectral methods and signal analysis

6.1 Basis functions

6.2 Expansion in Legendre polynomials 6.3 Fourier expansion

6.4 The Fourier transform

6.5 Fourier series

6.6 Chebychev polynomials

6.7 Weierstrass approximation theorem

6.8 Detector signals in the presence of noise

6.9 Signal detection by FFT using Maxima

6.10GPU-Butterfly filter in (f, f)

6.11Exercises

7. Root finding

7.1 Solving for √2 and π
7.2 Convergence in Newton's method

7.3 Contraction mapping

7.4 Newton's method in two dimensions

7.5 Basins of attraction

7.6 Root finding in higher dimensions

7.7 Exercises

8. Finite differencing: differentiation and integration

8.1 Vector fields

8.2 Gradient operator

8.3 Integration of ODE's

8.4 Numerical integration of ODE's

8.5 Examples of ordinary differential equations

8.6 Exercises

9. Perturbation theory, scaling and turbulence

9.1 Roots of a cubic equation

9.2 Damped pendulum

9.3 Orbital motion

9.4 Inertial and viscous fluid motion

9.5 Kolmogorov scaling of homogeneous turbulence

9.6 Exercises

Part III Selected topics

10. Thermodynamics of N-body systems

10.1 The action principle

10.2 Momentum in Euler-Lagragne equations

10.3 Legendre transformation

10.4 Hamiltonian formulation

10.5 Globular clusters

10.6 Coefficients of relaxation

10.7 Exercises

11. Accretion flows onto black holes

11.1 Bondi accretioin

11.2 Hoyle-Lyttleton accretion

11.3 Accretion disks

11.4 Gravitational wave emission

11.5 Mass transfer in binaries

11.6 Exercises

12. Rindler observers in astrophysics and cosmology

12.1 The moving mirror problem

12.2 Implications for dark matter

12.3 Exercises

A. Some units and consta


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия