Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Artificial Neural Networks and Evolutionary Computation in Remote Sensing, 


Варианты приобретения
Цена: 10667.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-28
Ориентировочная дата поставки: конец Ноября -начало Декабря
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания


Название:  Artificial Neural Networks and Evolutionary Computation in Remote Sensing
ISBN: 9783039438273
Издательство: Mdpi AG
Классификация:
ISBN-10: 3039438271
Обложка/Формат: Hardcover
Страницы: 256
Вес: 0.75 кг.
Дата издания: 19.01.2021
Язык: English
Размер: 24.41 x 16.99 x 2.06 cm
Читательская аудитория: General (us: trade)
Рейтинг:
Поставляется из: США
Описание:

Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification.




ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия