Learning Tensorflow.Js: Machine Learning in JavaScript, Laborde Gant
Автор: McClure Nick Название: Tensorflow Machine Learning Cookbook - Second Edition ISBN: 1789131685 ISBN-13(EAN): 9781789131680 Издательство: Неизвестно Цена: 7171.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Explore machine learning concepts using the latest numerical computing library - TensorFlow - with the help of this comprehensive cookbook About This Book - Your quick guide to implementing TensorFlow in your day-to-day machine learning activities - Learn advanced techniques that bring more accuracy and speed to machine learning - Upgrade your knowledge to the second generation of machine learning with this guide on TensorFlow Who This Book Is For This book is ideal for data scientists who are familiar with C++ or Python and perform machine learning activities on a day-to-day basis. Intermediate and advanced machine learning implementers who need a quick guide they can easily navigate will find it useful. What You Will Learn - Become familiar with the basics of the TensorFlow machine learning library - Get to know Linear Regression techniques with TensorFlow - Learn SVMs with hands-on recipes - Implement neural networks and improve predictions - Apply NLP and sentiment analysis to your data - Master CNN and RNN through practical recipes - Take TensorFlow into production In Detail TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning - each using Google's machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production. Style and approach This book takes a recipe-based approach where every topic is explicated with the help of a real-world example.
Автор: Gulli Antonio, Kapoor Amita Название: Tensorflow 1.X Deep Learning Cookbook ISBN: 1788293592 ISBN-13(EAN): 9781788293594 Издательство: Неизвестно Цена: 9010.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Take the next step in implementing various common and not-so-common neural networks with Tensorflow 1.x About This Book - Skill up and implement tricky neural networks using Google's TensorFlow 1.x - An easy-to-follow guide that lets you explore reinforcement learning, GANs, autoencoders, multilayer perceptrons and more. - Hands-on recipes to work with Tensorflow on desktop, mobile, and cloud environment Who This Book Is For This book is intended for data analysts, data scientists, machine learning practitioners and deep learning enthusiasts who want to perform deep learning tasks on a regular basis and are looking for a handy guide they can refer to. People who are slightly familiar with neural networks, and now want to gain expertise in working with different types of neural networks and datasets, will find this book quite useful. What You Will Learn - Install TensorFlow and use it for CPU and GPU operations - Implement DNNs and apply them to solve different AI-driven problems. - Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with TensorFlow and learn how to access and use them in your code. - Use TensorBoard to understand neural network architectures, optimize the learning process, and peek inside the neural network black box. - Use different regression techniques for prediction and classification problems - Build single and multilayer perceptrons in TensorFlow - Implement CNN and RNN in TensorFlow, and use it to solve real-world use cases. - Learn how restricted Boltzmann Machines can be used to recommend movies. - Understand the implementation of Autoencoders and deep belief networks, and use them for emotion detection. - Master the different reinforcement learning methods to implement game playing agents. - GANs and their implementation using TensorFlow. In Detail Deep neural networks (DNNs) have achieved a lot of success in the field of computer vision, speech recognition, and natural language processing. The entire world is filled with excitement about how deep networks are revolutionizing artificial intelligence. This exciting recipe-based guide will take you from the realm of DNN theory to implementing them practically to solve the real-life problems in artificial intelligence domain. In this book, you will learn how to efficiently use TensorFlow, Google's open source framework for deep learning. You will implement different deep learning networks such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learning Networks (DQNs), and Generative Adversarial Networks (GANs) with easy to follow independent recipes. You will learn how to make Keras as backend with TensorFlow. With a problem-solution approach, you will understand how to implement different deep neural architectures to carry out complex tasks at work. You will learn the performance of different DNNs on some popularly used data sets such as MNIST, CIFAR-10, Youtube8m, and more. You will not only learn about the different mobile and embedded platforms supported by TensorFlow but also how to set up cloud platforms for deep learning applications. Get a sneak peek of TPU architecture and how they will affect DNN future. By using crisp, no-nonsense recipes, you will become an expert in implementing deep learning techniques in growing real-world applications and research areas such as reinforcement learning, GANs, autoencoders and more. Style and approach This book consists of hands-on recipes where you'll deal with real-world problems. You'll execute a series of tasks as you walk through data mining challenges using TensorFlow 1.x. Your one-stop solution for common and not-so-common pain points, this is a book that you must have on the shelf.
Описание: Deep Learning is the next big thing. It is a part of machine learning. Its favorable results in application with huge and complex data is remarkable. This book will help you to get through the problems that you face during the execution of different tasks and understand hacks in deep learning, neural networks, and advanced machine learning techn...
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.
The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.
Описание: This book offers a single source that provides comprehensive coverage of the capabilities of TensorFlow 2 through the use of realistic, scenario-based projects. After learning what`s new in TensorFlow 2, you`ll dive right into developing machine learning models through applicable projects.
Автор: Mcclure, Nick Название: Tensorflow machine learning cookbook ISBN: 1786462168 ISBN-13(EAN): 9781786462169 Издательство: Неизвестно Рейтинг: Цена: 11217.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Explore machine learning concepts using the latest numerical computing library -- TensorFlow -- with the help of this comprehensive cookbook
Key Features
Your quick guide to implementing TensorFlow in your day-to-day machine learning activities
Learn advanced techniques that bring more accuracy and speed to machine learning
Upgrade your knowledge to the second generation of machine learning with this guide on TensorFlow
Book Description
TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You'll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning - each using Google's machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production.
What you will learn
Become familiar with the basics of the TensorFlow machine learning library
Get to know Linear Regression techniques with TensorFlow
Learn SVMs with hands-on recipes
Implement neural networks and improve predictions
Apply NLP and sentiment analysis to your data
Master CNN and RNN through practical recipes
Take TensorFlow into production
Who this book is for
This book is ideal for data scientists who are familiar with C++ or Python and perform machine learning activities on a day-to-day basis. Intermediate and advanced machine learning implementers who need a quick guide they can easily navigate will find it useful.
Описание: This book is designed to guide you through TensorFlow 2 and how to use it effectively. Throughout the book, you will work through recipes and get hands-on experience to perform complex data computations, gain insights into your data, and more.
!! 55% OFF for Bookstores!! NOW at 29,95 instead of 39.95 !!
Buy it NOW and let your customers get addicted to this awesome book!
Автор: Sasaki Kai Название: Hands-On Machine Learning with TensorFlow.js ISBN: 1838821732 ISBN-13(EAN): 9781838821739 Издательство: Неизвестно Рейтинг: Цена: 9010.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Hands-On Machine Learning with TensorFlow.js is a comprehensive guide that will help you easily get started with machine learning algorithms and techniques using TensorFlow.js. By the end of this book, you will be able to create and optimize your own web-based machine learning applications using practical examples.
Автор: Jain Ankit, Fandango Armando, Kapoor Amita Название: Tensorflow Machine Learning Projects ISBN: 1789132215 ISBN-13(EAN): 9781789132212 Издательство: Неизвестно Рейтинг: Цена: 7171.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book will show you how to take advantage of TensorFlow`s most appealing features - simplicity, efficiency, and flexibility - in various scenarios. You will gain cutting-edge insights into using TensorFlow`s offerings for your problems and learn practical hacks to successfully implement real-world machine learning projects.
Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You'll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems.
Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. The book also explores new approaches for integrating data privacy into machine learning pipelines.
Understand the machine learning management lifecycle
Implement data pipelines with Apache Airflow and Kubeflow Pipelines
Work with data using TensorFlow tools like ML Metadata, TensorFlow Data Validation, and TensorFlow Transform
Analyze models with TensorFlow Model Analysis and ship them with the TFX Model Pusher Component after the ModelValidator TFX Component confirmed that the analysis results are an improvement
Deploy models in a variety of environments with TensorFlow Serving, TensorFlow Lite, and TensorFlow.js
Learn methods for adding privacy, including differential privacy with TensorFlow Privacy and federated learning with TensorFlow Federated
Design model feedback loops to increase your data sets and learn when to update your machine learning models
Описание: You will learn the principles of computer vision and deep learning, and understand various models and architectures with their pros and cons. You will learn how to use TensorFlow 2.x to build your own neural network model and apply it to various computer vision tasks such as image acquiring, processing, and analyzing.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru