Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

An Invitation to Hyperbolic Groups, Daniel Peter Groves


Варианты приобретения
Цена: 16727.00р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Daniel Peter Groves
Название:  An Invitation to Hyperbolic Groups
ISBN: 9783110262803
Издательство: Walter de Gruyter
Классификация: ISBN-10: 3110262800
Обложка/Формат: Ebook
Страницы: 410
Вес: 0.00 кг.
Дата издания: 31.12.2020
Серия: Mathematics
Язык: English
Читательская аудитория: Professional and scholarly
Ключевые слова: MATHEMATICS / Algebra / Abstract,MATHEMATICS / Geometry / Algebraic,MATHEMATICS / Group Theory
Рейтинг:
Поставляется из: Германии
Описание: Geometric group theory studies groups as realized as symmetries of metric spaces. One of the most important classes of groups are `hyperbolic groups, the subject of this book. They have a beautiful and robust theory, which is explored from the beginning of the theory right up to the forefront of current research. It will suitable for an advanced graduate class, or for study by those beginning in the field provide a reference for experts and outsiders alike. The book starts from the beginning (at a level appropriate for graduate students just beginning in the field) and works up to somewhere near the current research in the area. The book also provides a valuable reference for experts, as well as mathematicians in other areas hoping to learn something about the field.


Автор: Daniel Peter Groves
Название: An Invitation to Hyperbolic Groups
ISBN: 3119166812 ISBN-13(EAN): 9783119166812
Издательство: Walter de Gruyter
Цена: 26024.00 р.
Наличие на складе: Нет в наличии.

Описание: Geometric group theory studies groups as realized as symmetries of metric spaces. One of the most important classes of groups are `hyperbolic groups', the subject of this book. They have a beautiful and robust theory, which is explored from the beginning of the theory right up to the forefront of current research. It will suitable for an advanced graduate class, or for study by those beginning in the field provide a reference for experts and outsiders alike. The book starts from the beginning (at a level appropriate for graduate students just beginning in the field) and works up to somewhere near the current research in the area. The book also provides a valuable reference for experts, as well as mathematicians in other areas hoping to learn something about the field.

Finite Volume Methods for Hyperbolic Problems

Автор: Randall J. LeVeque
Название: Finite Volume Methods for Hyperbolic Problems
ISBN: 0521009243 ISBN-13(EAN): 9780521009249
Издательство: Cambridge Academ
Рейтинг:
Цена: 11563.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae

Автор: Grosche Christian
Название: Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae
ISBN: 9814460079 ISBN-13(EAN): 9789814460071
Издательство: World Scientific Publishing
Рейтинг:
Цена: 19800.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition.The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition.In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super-) trace formula.

Automorphisms of Two-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane

Автор: William Goldman, Greg McShane, George Stantchev, Ser Peow Tan
Название: Automorphisms of Two-Generator Free Groups and Spaces of Isometric Actions on the Hyperbolic Plane
ISBN: 1470436140 ISBN-13(EAN): 9781470436148
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12474.00 р.
Наличие на складе: Нет в наличии.

Описание: The automorphisms of a two-generator free group $\mathsf F_2$ acting on the space of orientation-preserving isometric actions of $\mathsf F_2$ on hyperbolic 3-space defines a dynamical system.

Symbolic Dynamics and Hyperbolic Groups

Автор: Michel Coornaert; Athanase Papadopoulos
Название: Symbolic Dynamics and Hyperbolic Groups
ISBN: 3540564993 ISBN-13(EAN): 9783540564997
Издательство: Springer
Рейтинг:
Цена: 3487.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph elaborates on Gromov`s theory of hyperbolic groups and spaces in relation to symbolic dynamics. Particular attention is paid to the dynamical system defined by the action of a hyperbolic group on its boundary.

Hyperbolic Manifolds and Discrete Groups

Автор: Michael Kapovich
Название: Hyperbolic Manifolds and Discrete Groups
ISBN: 0817649123 ISBN-13(EAN): 9780817649128
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis.

Hyperbolic knot theory

Автор: Purcell, Jessica S.
Название: Hyperbolic knot theory
ISBN: 1470454998 ISBN-13(EAN): 9781470454999
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12289.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides an introduction to hyperbolic geometry in dimension three, with motivation and applications arising from knot theory. Hyperbolic geometry was first used as a tool to study knots by Riley and then Thurston in the 1970s. By the 1980s, combining work of Mostow and Prasad with Gordon and Luecke, it was known that a hyperbolic structure on a knot complement in the 3-sphere gives a complete knot invariant. However, it remains a difficult problem to relate the hyperbolic geometry of a knot to other invariants arising from knot theory. In particular, it is difficult to determine hyperbolic geometric information from a knot diagram, which is classically used to describe a knot. This textbook provides background on these problems, and tools to determine hyperbolic information on knots. It also includes results and state-of-the art techniques on hyperbolic geometry and knot theory to date.The book was written to be interactive, with many examples and exercises. Some important results are left to guided exercises. The level is appropriate for graduate students with a basic background in algebraic topology, particularly fundamental groups and covering spaces. Some experience with some differential topology and Riemannian geometry will also be helpful.

Автор: Kulikovskii, A.G. , Pogorelov, N.V. , Semenov, A
Название: Mathematical Aspects of Numerical Solution of Hyperbolic Systems
ISBN: 0367397730 ISBN-13(EAN): 9780367397739
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena.

The authors also address a number of original nonclassical problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice.

This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.

Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations

Автор: Sergio Albeverio; Michael Demuth; Elmar Schrohe; B
Название: Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations
ISBN: 3034894295 ISBN-13(EAN): 9783034894296
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. The book is the third volume of the subseries "Advances in Partial Differential Equations".

Handbook on Numerical Methods for Hyperbolic Problems,18

Автор: Abgrall, Remi
Название: Handbook on Numerical Methods for Hyperbolic Problems,18
ISBN: 0444639101 ISBN-13(EAN): 9780444639103
Издательство: Elsevier Science
Рейтинг:
Цена: 26949.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations.

Theory, Numerics and Applications of Hyperbolic Problems I

Автор: Christian Klingenberg; Michael Westdickenberg
Название: Theory, Numerics and Applications of Hyperbolic Problems I
ISBN: 3030082725 ISBN-13(EAN): 9783030082727
Издательство: Springer
Рейтинг:
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия