Time-Fractional Order Biological Systems with Uncertain Parameters, Rajarama Mohan Jena, Snehashish Chakraverty, Subrat Kumar Jena
Автор: Rajarama Mohan Jena, Snehashish Chakraverty, Subrat Kumar Jena Название: Time-Fractional Order Biological Systems with Uncertain Parameters ISBN: 1681737493 ISBN-13(EAN): 9781681737492 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 8593.00 р. Наличие на складе: Нет в наличии.
Описание: The subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated applications in various fields of science and engineering. It is a generalization of ordinary differentiation and integration to arbitrary (non-integer) order. The fractional derivative has been used in various physical problems, such as frequency-dependent damping behavior of structures, biological systems, motion of a plate in a Newtonian fluid, λμ controller for the control of dynamical systems, and so on. It is challenging to obtain the solution (both analytical and numerical) of related nonlinear partial differential equations of fractional order. So for the last few decades, a great deal of attention has been directed towards the solution for these kind of problems. Different methods have been developed by other researchers to analyze the above problems with respect to crisp (exact) parameters.
However, in real-life applications such as for biological problems, it is not always possible to get exact values of the associated parameters due to errors in measurements/experiments, observations, and many other errors. Therefore, the associated parameters and variables may be considered uncertain. Here, the uncertainties are considered interval/fuzzy. Therefore, the development of appropriate efficient methods and their use in solving the mentioned uncertain problems are the recent challenge.
In view of the above, this book is a new attempt to rigorously present a variety of fuzzy (and interval) time-fractional dynamical models with respect to different biological systems using computationally efficient method. The authors believe this book will be helpful to undergraduates, graduates, researchers, industry, faculties, and others throughout the globe.
Автор: Angelo B. Mingarelli; S. Gotskalk Halvorsen Название: Non-Oscillation Domains of Differential Equations with Two Parameters ISBN: 3540500782 ISBN-13(EAN): 9783540500780 Издательство: Springer Рейтинг: Цена: 3492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Offers an introduction to single linear differential equations (systems) with two parameters and extensions to difference equations and Stieltjes integral equations. This book is suitable for graduate students and researchers.
Автор: Sethna, James P. (cornell University) Название: Statistical mechanics: entropy, order parameters, and complexity ISBN: 0198865244 ISBN-13(EAN): 9780198865247 Издательство: Oxford Academ Рейтинг: Цена: 11405.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A new and updated edition of the successful Statistical Mechanics: Entropy, Order Parameters and Complexity from 2006. Statistical mechanics is a core topic in modern physics. Innovative, fresh introduction to the broad range of topics of statistical mechanics today, by brilliant teacher and renowned researcher.
Автор: Sethna, James P. (cornell University) Название: Statistical mechanics: entropy, order parameters, and complexity ISBN: 0198865252 ISBN-13(EAN): 9780198865254 Издательство: Oxford Academ Рейтинг: Цена: 6018.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A new and updated edition of the successful Statistical Mechanics: Entropy, Order Parameters and Complexity from 2006. Statistical mechanics is a core topic in modern physics. Innovative, fresh introduction to the broad range of topics of statistical mechanics today, by brilliant teacher and renowned researcher.
Описание: A record of the workshop on asymptotic-induced numerical methods for partial differential equations, critical parameters and domain decomposition, held at Beaune, France. The book discusses new computational methods, recent algorithm developments and techniques in mathematical modelling.
Автор: Stefan Liebscher Название: Bifurcation without Parameters ISBN: 3319107763 ISBN-13(EAN): 9783319107769 Издательство: Springer Рейтинг: Цена: 4890.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Targeted at mathematicians having at least a basic familiarity with classical bifurcation theory, this monograph provides a systematic classification and analysis of bifurcations without parameters in dynamical systems.
Автор: Tiberiu Constantinescu Название: Schur Parameters, Factorization and Dilation Problems ISBN: 3034899106 ISBN-13(EAN): 9783034899109 Издательство: Springer Рейтинг: Цена: 14673.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The subject of this book is about the ubiquity of the Schur parameters, whose introduction goes back to a paper of I. Schur in 1917 concerning an interpolation problem of C. Caratheodory. What followed there appears to be a truly fascinating story which, however, should be told by a professional historian. Here we provide the reader with a simplified version, mostly related to the contents of the book. In the twenties, thf theory of orthogonal polynomials on the unit circle was developed by G. Szego and the formulae relating these polynomials involved num- bers (usually called Szego parameters) similar to the Schur parameters. Mean- while, R. Nevanlinna and G. Pick studied the theory of another interpolation problem, known since then as the Nevanlinna-Pick problem, and an algorithm similar to Schur's one was obtained by Nevanlinna. In 1957, Z. Nehari solved OO an L problem which contained both Caratheodory-Schur and Nevannlina-Pick problems as particular cases. Apparently unrelated work of H. Weyl, J. von Neu- mann and K. Friedericks concerning selfadjoint extensions of symmetric operators was connected to interpolation by M. A. Naimark and M. G Krein using some gen- eral dilation theoretic ideas. Classical moment problems, like the trigonometric moment and Hamburger moment problems, were also related to these topics and a comprehensive account of what can be called the classical period has appeared in the monograph of M. G. Krein and A. A. Nudelman, KN].
Автор: Rafael Mart?nez-Guerra; Claudia A. P?rez-Pinacho; Название: Synchronization of Integral and Fractional Order Chaotic Systems ISBN: 3319152831 ISBN-13(EAN): 9783319152837 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems.
Описание: The book describes the application of different numerical methods to simulate integer/fractional-order chaotic systems. These methods are used within optimization loops to maximize positive Lyapunov exponents, Kaplan-Yorke dimension, and entropy.
Описание: Preface.- Introduction.- Basic Concepts and Preliminares.- Synchronization of Chaotic Systems by means of a nonlinear observer: An application to Secure Communications.- Synchronization for Chaotic system through an Observer using the Immersion and Invariance (I&I) Approach.- Synchronization of Nonlinear Fractional Order Systems by Means of PIra Reduced Order Observer.- Estimators for a class of commensurate fractional order systems with Caputo derivative.- Generalized Multi-synchronization of Fractional Order Liouvillian Chaotic Systems using Fractional Dynamical Controller.- An Observer for a Class of Incommensurate Fractional Order Systems.- Fractional Generalized quasi-synchronization of incommensurate fractional order oscillators.- Synchronization and Anti-synchronization of fractional order chaotic systems by means of a fractional integral observer.- Appendix.- Index.
Описание: This book explains the essentials of fractional calculus and demonstrates its application in control system modeling, analysis and design. It presents original research to find high-precision solutions to fractional-order differentiations and differential equations. Numerical algorithms and their implementations are proposed to analyze multivariable fractional-order control systems. Through high-quality MATLAB programs, it provides engineers and applied mathematicians with theoretical and numerical tools to design control systems. ContentsIntroduction to fractional calculus and fractional-order controlMathematical prerequisitesDefinitions and computation algorithms of fractional-order derivatives and IntegralsSolutions of linear fractional-order differential equationsApproximation of fractional-order operatorsModelling and analysis of multivariable fractional-order transfer function MatricesState space modelling and analysis of linear fractional-order SystemsNumerical solutions of nonlinear fractional-order differential EquationsDesign of fractional-order PID controllersFrequency domain controller design for multivariable fractional-order SystemsInverse Laplace transforms involving fractional and irrational OperationsFOTF Toolbox functions and modelsBenchmark problems for the assessment of fractional-order differential equation algorithms
Описание: Introduction.- Properties of a polycentric oval.-F .- Ruler/Compass constructions of simple ovals.- Ovals with given symmetry axis lines.- Ovals with unknown axis lines.-Inscribing and circumscribing ovals - The frame problem.- The stadium problem and the running track.- Parameter formulas for simple ovals and applications.- Parameter formulas for simple ovals.- Limitations for the frame problem.- Measuring a four-centre oval.- Optimisation problems for ovals.- Ovals with 4n centres.- Remarkable four-centre ovals .-Appendix.-References.-Acknowledgements.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru