Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Explainable Recommendation: A Survey and New Perspectives, Xu Chen, Yongfeng Zhang


Варианты приобретения
Цена: 9841.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Xu Chen, Yongfeng Zhang
Название:  Explainable Recommendation: A Survey and New Perspectives
ISBN: 9781680836585
Издательство: Mare Nostrum (Eurospan)
Классификация:
ISBN-10: 1680836587
Обложка/Формат: Paperback
Страницы: 114
Вес: 0.17 кг.
Дата издания: 30.04.2020
Серия: Foundations and trends (r) in information retrieval
Язык: English
Размер: 23.39 x 15.60 x 0.61 cm
Читательская аудитория: Professional and scholarly
Ключевые слова: Computer science,Information technology: general issues, COMPUTERS / Information Technology
Подзаголовок: A survey and new perspectives
Рейтинг:
Поставляется из: Англии
Описание: Provides a comprehensive review of explainable recommendation research. The authors first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W. They then conduct a comprehensive survey of explainable recommendation.


Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining

Автор: Emmanouil Amolochitis
Название: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining
ISBN: 8793609647 ISBN-13(EAN): 9788793609648
Издательство: Taylor&Francis
Рейтинг:
Цена: 11789.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining presents novel algorithms for academic search, recommendation and association rule mining that have been developed and optimized for different commercial as well as academic purpose systems. Along with the design and implementation of algorithms, a major part of the work presented in the book involves the development of new systems both for commercial as well as for academic use. In the first part of the book the author introduces a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. In order to evaluate the performance of the introduced algorithms, a meta-search engine has been designed and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme. In the second part of the book the design of novel recommendation algorithms with application in different types of e-commerce systems are described. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. The initial version of the system uses a novel hybrid recommender (user, item and content based) and provides daily recommendations to all active subscribers of the provider (currently more than 30,000). The recommenders that we are presenting are hybrid by nature, using an ensemble configuration of different content, user as well as item-based recommenders in order to provide more accurate recommendation results.The final part of the book presents the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form that antecedent implies consequent consisting of a set of numerical or quantitative attributes. The introduced mining algorithm processes a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. The generated rules show strong relationships that exist between the consequent and the antecedent of each rule, representing different items that have been consumed at specific price levels. This research book will be of appeal to researchers, graduate students, professionals, engineers and computer programmers.

Explainable, Transparent Autonomous Agents and Multi-Agent Systems: Second International Workshop, Extraamas 2020, Auckland, New Zealand, May 9-13, 20

Автор: Calvaresi Davide, Najjar Amro, Winikoff Michael
Название: Explainable, Transparent Autonomous Agents and Multi-Agent Systems: Second International Workshop, Extraamas 2020, Auckland, New Zealand, May 9-13, 20
ISBN: 3030519236 ISBN-13(EAN): 9783030519230
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the Second International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems, EXTRAAMAS 2020, which was due to be held in Auckland, New Zealand, in May 2020.

Explainable AI and Other Applications of Fuzzy Techniques: Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processin

Автор: Rayz Julia, Raskin Victor, Dick Scott
Название: Explainable AI and Other Applications of Fuzzy Techniques: Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processin
ISBN: 303082098X ISBN-13(EAN): 9783030820985
Издательство: Springer
Рейтинг:
Цена: 34937.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book focuses on an overview of the AI techniques, their foundations, their applications, and remaining challenges and open problems. Many artificial intelligence (AI) techniques do not explain their recommendations. Providing natural-language explanations for numerical AI recommendations is one of the main challenges of modern AI. To provide such explanations, a natural idea is to use techniques specifically designed to relate numerical recommendations and natural-language descriptions, namely fuzzy techniques.

This book is of interest to practitioners who want to use fuzzy techniques to make AI applications explainable, to researchers who may want to extend the ideas from these papers to new application areas, and to graduate students who are interested in the state-of-the-art of fuzzy techniques and of explainable AI--in short, to anyone who is interested in problems involving fuzziness and AI in general.


Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability

Автор: Shaban-Nejad Arash, Michalowski Martin, Buckeridge David L.
Название: Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability
ISBN: 3030533514 ISBN-13(EAN): 9783030533519
Издательство: Springer
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights the latest advances in the application of artificial intelligence and data science in health care and medicine.

Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps

Автор: Rothman Denis
Название: Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps
ISBN: 1800208138 ISBN-13(EAN): 9781800208131
Издательство: Неизвестно
Рейтинг:
Цена: 10114.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In today`s era of AI, accurately interpreting and communicating trustworthy, fair, and secure AI findings have become a crucial skill to master. This book bridges the gap between AI`s pitfalls and potential by helping you build the ability to leverage machine learning with Python to visualize and integrate AI.

Explainable Neural Networks Based on Fuzzy Logic and Multi-Criteria Decision Tools

Автор: Dombi Jуzsef, Csiszбr Orsolya
Название: Explainable Neural Networks Based on Fuzzy Logic and Multi-Criteria Decision Tools
ISBN: 3030722791 ISBN-13(EAN): 9783030722791
Издательство: Springer
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient.

Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent

Автор: Zhou Jianlong, Chen Fang
Название: Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent
ISBN: 3030080072 ISBN-13(EAN): 9783030080075
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With an evolutionary advancement of Machine Learning (ML) algorithms, a rapid increase of data volumes and a significant improvement of computation powers, machine learning becomes hot in different applications. However, because of the nature of “black-box” in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation, explanation, trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning, visual explanation of ML processes, algorithmic explanation of ML models, human cognitive responses in ML-based decision making, human evaluation of machine learning and domain knowledge in transparent ML applications.This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making.This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence, decision support systems and human-computer interaction.

Explainable, Transparent Autonomous Agents and Multi-Agent Systems

Автор: Davide Calvaresi; Amro Najjar; Michael Schumacher;
Название: Explainable, Transparent Autonomous Agents and Multi-Agent Systems
ISBN: 303030390X ISBN-13(EAN): 9783030303907
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the First International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems, EXTRAAMAS 2019, held in Montreal, Canada, in May 2019. The 12 revised and extended papers presented were carefully selected from 23 submissions. explainable agent simulations;

Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance

Автор: Rutkowski Tom
Название: Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance
ISBN: 3030755207 ISBN-13(EAN): 9783030755201
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations.

Explainable and Transparent AI and Multi-Agent Systems: Third International Workshop, Extraamas 2021, Virtual Event, May 3-7, 2021, Revised Selected P

Автор: Calvaresi Davide, Najjar Amro, Winikoff Michael
Название: Explainable and Transparent AI and Multi-Agent Systems: Third International Workshop, Extraamas 2021, Virtual Event, May 3-7, 2021, Revised Selected P
ISBN: 3030820165 ISBN-13(EAN): 9783030820169
Издательство: Springer
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the Third International Workshop on Explainable, Transparent AI and Multi-Agent Systems, EXTRAAMAS 2021, which was held virtually due to the COVID-19 pandemic. The 19 long revised papers and 1 short contribution were carefully selected from 32 submissions.

Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems

Автор: Mar Marcos; Jose M. Juarez; Richard Lenz; Grzegorz
Название: Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems
ISBN: 3030374459 ISBN-13(EAN): 9783030374457
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes revised selected papers from the AIME 2019 workshops KR4HC/ProHealth 2019, the Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care, and TEAAM 2019, the Workshop on Transparent, Explainable and Affective AI in Medical Systems.

Explainable and Interpretable Models in Computer Vision and Machine Learning

Автор: Hugo Jair Escalante; Sergio Escalera; Isabelle Guy
Название: Explainable and Interpretable Models in Computer Vision and Machine Learning
ISBN: 3319981307 ISBN-13(EAN): 9783319981307
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning· Explanation Methods in Deep Learning· Learning Functional Causal Models with Generative Neural Networks· Learning Interpreatable Rules for Multi-Label Classification· Structuring Neural Networks for More Explainable Predictions· Generating Post Hoc Rationales of Deep Visual Classification Decisions· Ensembling Visual Explanations· Explainable Deep Driving by Visualizing Causal Attention· Interdisciplinary Perspective on Algorithmic Job Candidate Search· Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия