Описание: Starting from the basics of neural networks, this book covers over 50 applications of computer vision and helps you to gain a solid understanding of the theory of various architectures before implementing them. Each use case is accompanied by a notebook in GitHub with ready-to-execute code and self-assessment questions.
Автор: Aboul Ella Hassanien; Mohamed Tolba; Ahmad Taher A Название: Advanced Machine Learning Technologies and Applications ISBN: 3319134604 ISBN-13(EAN): 9783319134604 Издательство: Springer Рейтинг: Цена: 11460.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the Second International Conference on Advanced Machine Learning Technologies and Applications, AMLTA 2014, held in Cairo, Egypt, in November 2014. machine learning in watermarking/authentication and virtual machines;
Автор: Mahrishi Mehul, Hiran Kamal Kant, Meena Gaurav Название: Machine Learning and Deep Learning in Real-Time Applications ISBN: 1799830969 ISBN-13(EAN): 9781799830962 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 23199.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Описание: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.
Описание: This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly.
Описание: Chapter 1: Introduction to Deep Learning-based Technological Applications.- Chapter 2: Vision to Language: Methods, Metrics and Datasets.- Chapter 3: Deep Learning Techniques for Geospatial Data Analysis.- Chapter 4: Deep Learning Approaches in Food Recognition.- Chapter 5: Deep Learning for Twitter Sentiment Analysis: the Effect of pre-trained Word Embedding.- Chapter 6: A Good Defense is a Strong DNN: Defending the IoT with Deep Neural Networks.- Chapter 7: Survey on Deep Learning Techniques for Medical Imaging Application Area.- Chapter 8: Deep Learning Methods in Electroencephalography.
Описание: You will learn the principles of computer vision and deep learning, and understand various models and architectures with their pros and cons. You will learn how to use TensorFlow 2.x to build your own neural network model and apply it to various computer vision tasks such as image acquiring, processing, and analyzing.
Описание: This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics.
Автор: Pedro Larran?aga; Alberto Ogbechie Название: Industrial Applications of Machine Learning ISBN: 0367656876 ISBN-13(EAN): 9780367656874 Издательство: Taylor&Francis Рейтинг: Цена: 7195.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book shows how machine learning can be applied to address real-world problems in the fourth industrial revolution and provides the required knowledge and tools to empower readers to build their own solutions based on theory and practice. The book introduces the fourth industrial revolution and its current impact on organizations and society
Автор: Raschka, Sebastian Mirjalili, Vahid Название: Python machine learning - ISBN: 1787125939 ISBN-13(EAN): 9781787125933 Издательство: Неизвестно Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.
Автор: Georgios Paliouras; Vangelis Karkaletsis; Constant Название: Machine Learning and Its Applications ISBN: 3540424903 ISBN-13(EAN): 9783540424901 Издательство: Springer Рейтинг: Цена: 7400.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Examining the capabilities of machine learning methods and ideas on how they apply to real-world problems, this text assesses machine learning, then introduces applications of ML techniques in fields such as data mining, knowledge discovery, human language technology, and user modelling.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru