Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Statistical Atlases and Computational Models of the Heart. M&ms and Emidec Challenges: 11th International Workshop, Stacom 2020, Held in Conjunction w, Puyol Anton Esther, Pop Mihaela, Sermesant Maxime


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Puyol Anton Esther, Pop Mihaela, Sermesant Maxime
Название:  Statistical Atlases and Computational Models of the Heart. M&ms and Emidec Challenges: 11th International Workshop, Stacom 2020, Held in Conjunction w
ISBN: 9783030681067
Издательство: Springer
Классификация:




ISBN-10: 3030681068
Обложка/Формат: Paperback
Страницы: 417
Вес: 0.61 кг.
Дата издания: 05.04.2021
Язык: English
Размер: 23.39 x 15.60 x 2.26 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: Regular papers.- A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI.- Automatic multiplanar CT reformatting from trans-axial into left ventricle short-axis view.- Graph convolutional regression of cardiac depolarization from sparse endocardial maps.- A cartesian grid representation of left atrial appendages for deep learning based estimation of thrombogenic risk predictors.- Measure Anatomical Thickness from Cardiac MRI with Deep Neural Networks.- Modelling Fine-rained Cardiac Motion via Spatio-temporal Graph Convolutional Networks to Boost the Diagnosis of Heart Conditions- Towards mesh-free patient-specific mitral valve modeling.- PIEMAP: Personalized Inverse Eikonal Model from cardiac Electro-Anatomical Maps.- Automatic Detection of Landmarks for Fast Cardiac MR Image Registration.- Quality-aware semi-supervised learning for CMR segmentation.- Estimation of imaging biomarkers progression in post-infarct patients using cross-sectional data.- PC-U Net: Learning to Jointly Reconstruct and Segment the Cardiac Walls in 3D from CT Data.- Shape constrained CNN for cardiac MR segmentation with simultaneous prediction of shape and pose parameters.- Left atrial ejection fraction estimation using SEGANet for fully automated segmentation of CINE MRI.- Estimation of Cardiac Valve Annuli Motion with Deep Learning.- 4D Flow Magnetic Resonance Imaging for Left Atrial Haemodynamic Characterization and Model Calibration.- Segmentation-free Estimation of Aortic Diameters from MRI Using Deep Learning.- M&Ms challenge.- Histogram Matching Augmentation for Domain Adaptation with Application to Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Image Segmentation.- Disentangled Representations for Domain-generalized Cardiac Segmentation.- A 2-step Deep Learning method with Domain Adaptation for Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Magnetic Resonance Segmentation.- Random Style Transfer based Domain Generalization Networks Integrating Shape and Spatial Information.- Semi-supervised Cardiac Image Segmentation via Label Propagation and Style Transfer.- Domain-Adversarial Learning for Multi-Centre, Multi-Vendor, and Multi-Disease Cardiac MR Image Segmentation.- Studying Robustness of Segmantic Segmentation under Domain Shift in cardiac MRI.- A deep convolutional neural network approach for the segmentation of cardiac structures from MRI sequences.- Multi-center, Multi-vendor, and Multi-disease Cardiac Image Segmentation Using Scale-Independent Multi-Gate UNET.- Adaptive Preprocessing for Generalization in Cardiac MR Image Segmentation.- Deidentifying MRI data domain by iterative backpropagation.- A generalizable deep-learning approach for cardiac magnetic resonance image segmentation using image augmentation and attention U-Net.- Generalisable Cardiac Structure Segmentation via Attentional and Stacked Image Adaptation.- Style-invariant Cardiac Image Segmentation with Test-time Augmentation.- EMIDEC challenge.- Comparison of a Hybrid Mixture Model and a CNN for the Segmentation of Myocardial Pathologies in Delayed Enhancement MRI.- Cascaded Convolutional Neural Network for Automatic Myocardial Infarction Segmentation from Delayed-Enhancement Cardiac MRI.- Automatic Myocardial Disease Prediction From Delayed-Enhancement Cardiac MRI and Clinical Information.- SM2N2: A Stacked Architecture for Multimodal Data and its Application to Myocardial Infarction Detection.- A Hybrid Network for Automatic Myocardial Infarction Segmentation in Delayed Enhancement-MRI.- Efficient 3D deep learning for myocardial diseases segmentation.- Deep-learning-based myocardial pathology detection.- Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI using Deep Convolutional Networks.- Uncertainty-based Segmentation of Myocardial Infarction Areas on Cardiac MR images.- Anatomy Prior Based U-net for Pathology Segmentation wi


Statistical Atlases and Computational Models of the Heart. Multi-Sequence Cmr Segmentation, Crt-Epiggy and LV Full Quantification Challenges: 10th Int

Автор: Pop Mihaela, Sermesant Maxime, Camara Oscar
Название: Statistical Atlases and Computational Models of the Heart. Multi-Sequence Cmr Segmentation, Crt-Epiggy and LV Full Quantification Challenges: 10th Int
ISBN: 303039073X ISBN-13(EAN): 9783030390730
Издательство: Springer
Рейтинг:
Цена: 10340.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Regular Papers.- Multi-Sequence CMR Segmentation Challenge.- CRT-EPiggy Challenge.- LV Full Quantification Challenge.

Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges

Автор: Oscar Camara; Tommaso Mansi; Mihaela Pop; Kawal Rh
Название: Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges
ISBN: 3319146777 ISBN-13(EAN): 9783319146775
Издательство: Springer
Рейтинг:
Цена: 7826.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges, STACOM 2014, held in conjunction with MICCAI 2014, in Boston, MA, USA, in September 2014.

Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges

Автор: Oscar Camara; Tommaso Mansi; Mihaela Pop; Kawal Rh
Название: Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
ISBN: 3319287117 ISBN-13(EAN): 9783319287119
Издательство: Springer
Рейтинг:
Цена: 6708.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Cardiac image processing.- Atlas construction.- Statistical modeling of cardiac function across different patient populations.- Cardiac mapping.- Cardiac computational physiology.- Model customization.- Image-based modelling and image-guided interventional procedures.- Atlas based functional analysis.-Ontological schemata for data and results.- Integrated functional and structural analysis.

Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges

Автор: Pop
Название: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges
ISBN: 3319755404 ISBN-13(EAN): 9783319755403
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-workshop proceedings of the 8th International Workshop on Statistical Atlases and Computational Models of the Heart: ACDC and MMWHS Challenges 2017, held in conjunction with MICCAI 2017, in Quebec, Canada, in September 2017.

Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges

Автор: Oscar Camara; Tommaso Mansi; Mihaela Pop; Kawal Rh
Название: Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges
ISBN: 364236960X ISBN-13(EAN): 9783642369605
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges, STACOM 2012, held in conjunction with MICCAI 2012, in Nice, France, in October 2012.

Predictive Intelligence in Medicine: Third International Workshop, Prime 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 8, 2020, Proc

Автор: Rekik Islem, Adeli Ehsan, Park Sang Hyun
Название: Predictive Intelligence in Medicine: Third International Workshop, Prime 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 8, 2020, Proc
ISBN: 3030593533 ISBN-13(EAN): 9783030593537
Издательство: Springer
Рейтинг:
Цена: 8104.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the Third International Workshop on Predictive Intelligence in Medicine, PRIME 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020.

Thoracic Image Analysis: Second International Workshop, Tia 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 8, 2020, Proceeding

Автор: Petersen Jens, San Josй Estйpar Raъl, Schmidt-Richberg Alexander
Название: Thoracic Image Analysis: Second International Workshop, Tia 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 8, 2020, Proceeding
ISBN: 3030624684 ISBN-13(EAN): 9783030624682
Издательство: Springer
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Multi-cavity Heart Segmentation in Non-contrast Non-ECG Gated CT Scans with F-CNN.- 3D Deep Convolutional Neural Network-based Ventilated Lung Segmentation using Multi-nuclear Hyperpolarized Gas MRI.- Lung Cancer Tumor Region Segmentation Using Recurrent 3D-DenseUNet.- 3D Probabilistic Segmentation and Volumetry from 2D Projection Images.- CovidDiagnosis: Deep Diagnosis of Covid-19 Patients using Chest X-rays.- Can We Trust Deep Learning Based Diagnosis? The Impact of Domain Shift in Chest Radiograph Classification.- A Weakly Supervised Deep Learning Framework for COVID-19 CT Detection and Analysis.- Deep Reinforcement Learning for Localization of the Aortic Annulus in Patients with Aortic Dissection.- Functional-Consistent CycleGAN for CT to Iodine Perfusion Map Translation.- MRI to CTA Translation for Pulmonary Artery Evaluation using CycleGANs Trained with Unpaired Data.- Semi-supervised Virtual Regression of Aortic Dissections Using 3D Generative Inpainting.- Registration-Invariant Biomechanical Features for Disease Staging of COPD in SPIROMICS.- Deep Group-wise Variational Diffeomorphic Image Registration.


Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges

Автор: Mihaela Pop; Maxime Sermesant; Jichao Zhao; Shuo L
Название: Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges
ISBN: 3030120287 ISBN-13(EAN): 9783030120283
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-workshop proceedings of the 9th International Workshop on Statistical Atlases and Computational Models of the Heart: Atrial Segmentation and LV Quantification Challenges, STACOM 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 52 revised full workshop papers were carefully reviewed and selected from 60 submissions. The topics of the workshop included: cardiac imaging and image processing, machine learning applied to cardiac imaging and image analysis, atlas construction, statistical modelling of cardiac function across different patient populations, cardiac computational physiology, model customization, atlas based functional analysis, ontological schemata for data and results, integrated functional and structural analyses, as well as the pre-clinical and clinical applicability of these methods.

Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges

Автор: Oscar Camara; Tommaso Mansi; Mihaela Pop; Kawal Rh
Название: Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
ISBN: 3642542670 ISBN-13(EAN): 9783642542671
Издательство: Springer
Рейтинг:
Цена: 6429.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges, STACOM 2013, held in conjunction with MICCAI 2013, in Nagoya, Japan, in September 2013.

Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges

Автор: Tommaso Mansi; Kristin McLeod; Mihaela Pop; Kawal
Название: Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
ISBN: 3319527177 ISBN-13(EAN): 9783319527178
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-workshop proceedings of the 7th International Workshop on Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges.

Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 4, 2020, Procee

Автор: Liu Mingxia, Yan Pingkun, Lian Chunfeng
Название: Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 4, 2020, Procee
ISBN: 3030598608 ISBN-13(EAN): 9783030598600
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder with Resting-State fMRI.- Error Attention Interactive Segmentation of Medical Images through Matting and Fusion.- A Novel fMRI Representation Learning Framework with GAN.- Semi-supervised Segmentation with Self-Training Based on Quality Estimation and Refinement.- 3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodies.- Super Resolution of Arterial Spin Labeling MR Imaging Using Unsupervised Multi-Scale Generative Adversarial Network.- Self-Recursive Contextual Network for Unsupervised 3D Medical Image Registration.- Automated Tumor Proportion Scoring for Assessment of PD-L1 Expression Based on Multi-Stage Ensemble Strategy.- Uncertainty Quantification in Medical Image Segmentation with Normalizing Flows.- Out-of-Distribution Detection for Skin Lesion Images with Deep Isolation Forest.- A 3D+2D CNN Approach Incorporating Boundary Loss for Stroke Lesion Segmentation.- Linking Adolescent Brain MRI to Obesity via Deep Multi-cue Regression Network.- Robust Multiple Sclerosis Lesion Inpainting with Edge Prior.- Segmentation to Label: Automatic Coronary Artery Labeling from Mask Parcellation.- GSR-Net: Graph Super-Resolution Network for Predicting High-Resolution from Low-Resolution Functional Brain Connectomes.- Anatomy-Aware Cardiac Motion Estimation.- Division and Fusion: Rethink Convolutional Kernels for 3D Medical Image Segmentation.- LDGAN: Longitudinal-Diagnostic Generative Adversarial Network for Disease Progression Prediction with Missing Structural MRI.- Unsupervised MRI Homogenization: Application to Pediatric Anterior Visual Pathway Segmentation.- Boundary-aware Network for Kidney Tumor Segmentation.- O-Net: An Overall Convolutional Network for Segmentation Tasks.- Label-Driven Brain Deformable Registration Using Structural Similarity and Nonoverlap Constraints.- EczemaNet: Automating Detection and Severity Assessment of Atopic Dermatitis.- Deep Distance Map Regression Network with Shape-aware Loss for Imbalanced Medical Image Segmentation.- Joint Appearance-Feature Domain Adaptation: Application to QSM Segmentation Transfer.- Exploring Functional Difference between Gyri and Sulci via Region-Specific 1D Convolutional Neural Networks.- Detection of Ischemic Infarct Core in Non-Contrast Computed Tomography.- Bayesian Neural Networks for Uncertainty Estimation of Imaging Biomarkers.- Extended Capture Range of Rigid 2D/3D Registration by Estimating Riemannian Pose Gradients.- Structural Connectivity Enriched Functional Brain Network using Simplex Regression with GraphNet.- Constructing High-Order Dynamic Functional Connectivity Networks from Resting-State fMRI for Brain Dementia Identification.- Multi-tasking Siamese Networks for Breast Mass Detection using Dual-view Mammogram Matching.- 3D Volume Reconstruction from Single Lateral X-ray Image via Cross-Modal Discrete Embedding Transition.- Cleft Volume Estimation and Maxilla Completion Using Cascaded Deep Neural Networks.- A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.- Learning Conditional Deformable Shape Templates for Brain Anatomy .- Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity.- Unsupervised Learning for Spherical Surface Registration.- Anatomy-guided Convolutional Neural Network for Motion Correction in Fetal Brain MRI.- Gyral Growth Patterns of Macaque Brains Revealed by Scattered Orthogonal Nonnegative Matrix Factorization.- Inhomogeneity Correction in Magnetic Resonance Images Using Deep Image Priors.- Hierarchical and Robust Pathology Image Reading for High-Throughput Cervical Abnormality Screening .- Importance Driven Continual Learning for Segmentation Across Domains.- RDCNet: Instance segmentation with a minimalist recurrent residual network.- Automatic Segmentation of Achilles Tend

Deep Learning for Human Activity Recognition: Second International Workshop, DL-Har 2020, Held in Conjunction with Ijcai-Pricai 2020, Kyoto, Japan, Ja

Автор: Li Xiaoli, Wu Min, Chen Zhenghua
Название: Deep Learning for Human Activity Recognition: Second International Workshop, DL-Har 2020, Held in Conjunction with Ijcai-Pricai 2020, Kyoto, Japan, Ja
ISBN: 9811605742 ISBN-13(EAN): 9789811605741
Издательство: Springer
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия