Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Interpretable Artificial Intelligence: A Perspective of Granular Computing, Pedrycz Witold, Chen Shyi-Ming


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Pedrycz Witold, Chen Shyi-Ming
Название:  Interpretable Artificial Intelligence: A Perspective of Granular Computing
ISBN: 9783030649487
Издательство: Springer
Классификация:
ISBN-10: 3030649482
Обложка/Формат: Hardcover
Страницы: 429
Вес: 0.79 кг.
Дата издания: 27.03.2021
Язык: English
Размер: 23.39 x 15.60 x 2.54 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) - Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing.


Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, IMIMIC 2020, Second International Workshop,

Автор: Cardoso Jaime, Van Nguyen Hien, Heller Nicholas
Название: Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, IMIMIC 2020, Second International Workshop,
ISBN: 3030611655 ISBN-13(EAN): 9783030611651
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: iMIMIC 2020.- Assessing attribution maps for explaining CNN-based vertebral fracture classifiers.- Projective Latent Interventions for Understanding and Fine-tuning Classifiers.- Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging.- Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations.- Improving Interpretability for Computer-aided Diagnosis tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-based Explanations.- Explainable Disease Classification via weakly-supervised segmentation.- Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns.- Explainability for regression CNN in fetal head circumference estimation from ultrasound images.- MIL3ID 2020.- Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins.- Semi-supervised Instance Segmentation with a Learned Shape Prior.- COMe-SEE: Cross-Modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs.- Semi-supervised Machine Learning with MixMatch and Equivalence Classes.- Non-contrast CT Liver Segmentation using CycleGAN Data Augmentation from Contrast Enhanced CT.- Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation.- A Case Study of Transfer of Lesion-Knowledge.- Transfer Learning With Joint Optimization for Label-Efficient Medical Image Anomaly Detection.- Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D Multi-Domain Liver Segmentation.- HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification.- Semi-supervised classification of chest radiographs.- LABELS 2020.- Risk of training diagnostic algorithms on data with demographic bias.- Semi-Weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks.- Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels.- EasierPath: An Open-source Tool for Human-in-the-loop Deep Learning of Renal Pathology.- Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection.- Labeling of Multilingual Breast MRI Reports.- Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning.- Labelling imaging datasets on the basis of neuroradiology reports: a validation study.- Semi-Supervised Learning for Instrument Detection with a Class Imbalanced Dataset.- Paying Per-label Attention for Multi-label Extraction from Radiology Reports.

Explainable and Interpretable Models in Computer Vision and Machine Learning

Автор: Hugo Jair Escalante; Sergio Escalera; Isabelle Guy
Название: Explainable and Interpretable Models in Computer Vision and Machine Learning
ISBN: 3319981307 ISBN-13(EAN): 9783319981307
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning· Explanation Methods in Deep Learning· Learning Functional Causal Models with Generative Neural Networks· Learning Interpreatable Rules for Multi-Label Classification· Structuring Neural Networks for More Explainable Predictions· Generating Post Hoc Rationales of Deep Visual Classification Decisions· Ensembling Visual Explanations· Explainable Deep Driving by Visualizing Causal Attention· Interdisciplinary Perspective on Algorithmic Job Candidate Search· Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations
Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective

Автор: Andrzej Jankowski
Название: Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective
ISBN: 3319576267 ISBN-13(EAN): 9783319576268
Издательство: Springer
Рейтинг:
Цена: 30745.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The book outlines selected projects conducted under the supervision of the author. Moreover, it discusses significant relations between Interactive Granular Computing (IGrC) and numerous dynamically developing scientific domains worldwide, along with features characteristic of the author's approach to IGrC. The results presented are a continuation and elaboration of various aspects of Wisdom Technology, initiated and developed in cooperation with Professor Andrzej Skowron.

Based on the empirical findings from these projects, the author explores the following areas:
(a) understanding the causes of the theory and practice gap problem (TPGP) in complex systems engineering (CSE);

(b) generalizing computing models of complex adaptive systems (CAS) (in particular, natural computing models) by constructing an interactive granular computing (IGrC) model of networks of interrelated interacting complex granules (c-granules), belonging to a single agent and/or to a group of agents;

(c) developing methodologies based on the IGrC model to minimize the negative consequences of the TPGP.

The book introduces approaches to the above issues, using the proposed IGrC model. In particular, the IGrC model refers to the key mechanisms used to control the processes related to the implementation of CSE projects.

One of the main aims was to develop a mechanism of IGrC control over computations that model a project's implementation processes to maximize the chances of its success, while at the same time minimizing the emerging risks. In this regard, the IGrC control is usually performed by means of properly selected and enforced (among project participants) project principles. These principles constitute examples of c-granules, expressed by complex vague concepts (represented by c-granules too). The c-granules evolve with time (in particular, the meaning of the concepts is also subject of change). This methodology is illustrated using project principles applied by the author during the implementation of the POLTAX, AlgoTradix, Merix, and Excavio projects outlined in the book.

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Автор: Dominik Slezak; JingTao Yao; James F. Peters; Wojc
Название: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing
ISBN: 3540286608 ISBN-13(EAN): 9783540286608
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Contains papers from the proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, held in Regina, Canada in August/September 2005 in 2 volumes.

Rough Sets, Fuzzy Sets, Data Mining and Granular Computing

Автор: Hiroshi Sakai; Mihir Chakraborty; Aboul-Ella Hassa
Название: Rough Sets, Fuzzy Sets, Data Mining and Granular Computing
ISBN: 3642106455 ISBN-13(EAN): 9783642106453
Издательство: Springer
Рейтинг:
Цена: 14673.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 12th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2009, held in Delhi, India in December 2009 in conjunction with the Third International Conference on Pattern Recognition and Machine Intelligence, PReMI 2009.

Granular Computing in Decision Approximation

Автор: Lech Polkowski; Piotr Artiemjew
Название: Granular Computing in Decision Approximation
ISBN: 3319366211 ISBN-13(EAN): 9783319366210
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce substantially the size of the granulated data set as well as the set of granular decision rules.

Granular Computing and Decision-Making

Автор: Witold Pedrycz; Shyi-Ming Chen
Название: Granular Computing and Decision-Making
ISBN: 3319364901 ISBN-13(EAN): 9783319364902
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Granularity Helps Explain Seemingly Irrational Features of Human Decision Making.- A Comprehensive Granular Model for Decision Making with Complex Data.-Granularity in Economic Decision Making: An Interdisciplinary Review.- Decision Makers' Opinions Changing Attitude-Driven Consensus Model under Linguistic Environment and Its Application in Dynamic MAGDM.- Using Computing with Words for Managing Non-Cooperative Behaviors in Large Scale Group Decision Making.- A Type-2 Fuzzy Logic Approach for Multi-Criteria Group Decision Making.- Multi-Criteria Influence Diagrams - A Tool for the Sequential Group Risk Assessment.-Consensus Modeling under Fuzziness - A Dynamic Approach with Random Iterative Steps.- Decision Making - Interactive and Interactive Approaches.- Collaborative Decision Making by Ensemble Rule Based Classification Systems.- A GDM Method Based on Granular Computing for Academic Library Management.- Spatial-taxon Information Granules as Used in Iterative Fuzzy-Decision-Making for Image Segmentation.- Group Decision Making in Fuzzy Environment - An Iterative Procedure Based on Group Dynamics.- Fuzzy Optimization in Decision Making of Air Quality Management.- Group Decision Making in Fuzzy Environment - An Iterative Procedure Based on Group Dynamics.- Fuzzy Optimization in Decision Making of Air Quality Management.

Interpretable Artificial Intelligence: A Perspective of Granular Computing

Автор: Pedrycz Witold, Chen Shyi-Ming
Название: Interpretable Artificial Intelligence: A Perspective of Granular Computing
ISBN: 3030649512 ISBN-13(EAN): 9783030649517
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) - Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing.

Design of Interpretable Fuzzy Systems

Автор: Krzysztof Cpa?ka
Название: Design of Interpretable Fuzzy Systems
ISBN: 3319850067 ISBN-13(EAN): 9783319850061
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Поставка под заказ.

Описание: The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms.

Design of Interpretable Fuzzy Systems

Автор: Krzysztof Cpa?ka
Название: Design of Interpretable Fuzzy Systems
ISBN: 3319528807 ISBN-13(EAN): 9783319528809
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms.

Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective

Автор: Andrzej Jankowski
Название: Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective
ISBN: 3319862111 ISBN-13(EAN): 9783319862118
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Research Motivations.- Research Objectives and Selected Approaches.- Challenges of WisTech (based on IGrC) for CAS Modeling, Controlling, and Monitoring.- Main Overview of Results.- Guide to the Contents of the Book.- The Concept of Complex System.- Examples of Complex Systems.- Concept of Complex Systems Engineering (CSE).- CSE Practice: CSE Crisis.- CSE Theory: Some Approaches.- TPGP: The Concept of the Theory - Practice Gap Problem.

Data Mining, Rough Sets and Granular Computing

Автор: Tsau Young Lin; Yiyu Y. Yao; Lotfi A. Zadeh
Название: Data Mining, Rough Sets and Granular Computing
ISBN: 3790825085 ISBN-13(EAN): 9783790825084
Издательство: Springer
Рейтинг:
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In essence, data mining deals with summarization of information which is resident in large data sets, while granular computing plays a key role in the summarization process by draw- ing together points (objects) which are related through similarity, proximity or functionality.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия