Modern Data Mining Algorithms in C++ and Cuda C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science, Masters Timothy
Автор: Agarwal, Dr Basant, Baka, Benjamin Название: Hands-On Data Structures and Algorithms with Python 2 ed ISBN: 1788995570 ISBN-13(EAN): 9781788995573 Издательство: Неизвестно Рейтинг: Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data structures help us to organize and align the data in a very efficient way. This book will surely help you to learn important and essential data structures through Python implementation for better understanding of the concepts.
Описание: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining presents novel algorithms for academic search, recommendation and association rule mining that have been developed and optimized for different commercial as well as academic purpose systems. Along with the design and implementation of algorithms, a major part of the work presented in the book involves the development of new systems both for commercial as well as for academic use. In the first part of the book the author introduces a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. In order to evaluate the performance of the introduced algorithms, a meta-search engine has been designed and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme. In the second part of the book the design of novel recommendation algorithms with application in different types of e-commerce systems are described. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. The initial version of the system uses a novel hybrid recommender (user, item and content based) and provides daily recommendations to all active subscribers of the provider (currently more than 30,000). The recommenders that we are presenting are hybrid by nature, using an ensemble configuration of different content, user as well as item-based recommenders in order to provide more accurate recommendation results.The final part of the book presents the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form that antecedent implies consequent consisting of a set of numerical or quantitative attributes. The introduced mining algorithm processes a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. The generated rules show strong relationships that exist between the consequent and the antecedent of each rule, representing different items that have been consumed at specific price levels. This research book will be of appeal to researchers, graduate students, professionals, engineers and computer programmers.
Автор: Guang-quan Zhang, Jie Lu, Qian Zhang Название: Recommender Systems: Advanced Developments ISBN: 9811224625 ISBN-13(EAN): 9789811224621 Издательство: World Scientific Publishing Рейтинг: Цена: 19800.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Recommender systems provide users (businesses or individuals) with personalized online recommendations of products or information, to address the problem of information overload and improve personalized services. Recent successful applications of recommender systems are providing solutions to transform online services for e-government, e-business, e-commerce, e-shopping, e-library, e-learning, e-tourism, and more.This unique compendium not only describes theoretical research but also reports on new application developments, prototypes, and real-world case studies of recommender systems. The comprehensive volume provides readers with a timely snapshot of how new recommendation methods and algorithms can overcome challenging issues. Furthermore, the monograph systematically presents three dimensions of recommender systems — basic recommender system concepts, advanced recommender system methods, and real-world recommender system applications.By providing state-of-the-art knowledge, this excellent reference text will immensely benefit researchers, managers, and professionals in business, government, and education to understand the concepts, methods, algorithms and application developments in recommender systems.
Описание: THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.
Автор: Gisele L. Pappa; Alex Freitas Название: Automating the Design of Data Mining Algorithms ISBN: 3642261256 ISBN-13(EAN): 9783642261251 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This unique text seeks to automate the design of a data mining algorithm. It first overviews data mining and evolutionary algorithms then discusses the design of a new genetic programming system for automating the design of full rule induction algorithms.
Автор: Jourdan Название: Metaheuristics for Big Data ISBN: 1848218060 ISBN-13(EAN): 9781848218062 Издательство: Wiley Рейтинг: Цена: 22010.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition.
Автор: Xingni Zhou, Zhiyuan Ren, Yanzhuo Ma, Kai Fan, Ji Xiang Название: Data structures based on linear relations ISBN: 3110595575 ISBN-13(EAN): 9783110595574 Издательство: Walter de Gruyter Цена: 12078.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Data structures is a key course for computer science and related majors. This book presents a variety of practical or engineering cases and derives abstract concepts from concrete problems. Besides basic concepts and analysis methods, it introduces basic data types such as sequential list, tree as well as graph. This book can be used as an undergraduate textbook, as a training textbook or a self-study textbook for engineers.
Автор: Binxing Fang, Yan Jia Название: Groups and Interaction ISBN: 3110597772 ISBN-13(EAN): 9783110597776 Издательство: Walter de Gruyter Рейтинг: Цена: 16169.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume set provides a systematic overview of theories and technique on social network analysis.Volume 2 of the set mainly focuses on the formation and interaction of group behaviors. Users’ behavior analysis, sentiment analysis, influence analysis and collective aggregation are discussed in detail as well. It is an essential reference for scientist and professionals in computer science.
Автор: Voulgaris Zacharias Название: Julia for Data Science ISBN: 1634621301 ISBN-13(EAN): 9781634621304 Издательство: Gazelle Book Services Рейтинг: Цена: 6200.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Master how to use the Julia language to solve business critical data science challenges. After covering the importance of Julia to the data science community and several essential data science principles, we start with the basics including how to install Julia and its powerful libraries. Many examples are provided as we illustrate how to leverage each Julia command, dataset, and function. Specialised script packages are introduced and described. Hands-on problems representative of those commonly encountered throughout the data science pipeline are provided, and we guide you in the use of Julia in solving them using published datasets. Many of these scenarios make use of existing packages and built-in functions, as we cover: 1. An overview of the data science pipeline along with an example illustrating the key points, implemented in Julia; 2. Options for Julia IDEs; 3. Programming structures and functions; 4. Engineering tasks, such as importing, cleaning, formatting and storing data, as well as performing data pre-processing; 5. Data visualisation and some simple yet powerful statistics for data exploration purposes; 6. Dimensionality reduction and feature evaluation; 7. Machine learning methods, ranging from unsupervised (different types of clustering) to supervised ones (decision trees, random forests, basic neural networks, regression trees, and Extreme Learning Machines); 8. Graph analysis including pinpointing the connections among the various entities and how they can be mined for useful insights. Each chapter concludes with a series of questions and exercises to reinforce what you learned. The last chapter of the book will guide you in creating a data science application from scratch using Julia.
Автор: Timothy Masters Название: Data Mining Algorithms in C++ ISBN: 148423314X ISBN-13(EAN): 9781484233146 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Discover hidden relationships among the variables in your data, and learn how to exploit these relationships. This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications. All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program. The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work. What you'll learn
Monte-Carlo permutation tests provide statistically sound assessment of relationships present in your data.
Combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data.
Feature weighting as regularized energy-based learning ranks variables according to their predictive power when there is too little data for traditional methods.
The eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the data.
Plotting regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high, provides visual insight into anomalous relationships.
Who this book is for
The techniques presented in this book and in the DATAMINE program will be useful to anyone interested in discovering and exploiting relationships among variables. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.
Автор: Yang, Xin-She Название: Yang - INTRODUCTION TO ALGORITHMS FOR DATA MINING AND MAC... ISBN: 0128172169 ISBN-13(EAN): 9780128172162 Издательство: Elsevier Science Рейтинг: Цена: 9936.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning as well as optimization. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modelling skills so they can process and interpret data for classification, clustering, curve-fitting, and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data.
Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics
Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study
Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages
Автор: Mehmed Kantardzic Название: Data Mining: Concepts, Models, Methods, and Algorithms ISBN: 1119516048 ISBN-13(EAN): 9781119516040 Издательство: Wiley Рейтинг: Цена: 17416.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Presents the latest techniques for analyzing and extracting information from large amounts of data in high-dimensional data spaces
The revised and updated third edition of Data Mining contains in one volume an introduction to a systematic approach to the analysis of large data sets that integrates results from disciplines such as statistics, artificial intelligence, data bases, pattern recognition, and computer visualization. Advances in deep learning technology have opened an entire new spectrum of applications. The author--a noted expert on the topic--explains the basic concepts, models, and methodologies that have been developed in recent years.
This new edition introduces and expands on many topics, as well as providing revised sections on software tools and data mining applications. Additional changes include an updated list of references for further study, and an extended list of problems and questions that relate to each chapter.This third edition presents new and expanded information that:
- Explores big data and cloud computing
- Examines deep learning
- Includes information on convolutional neural networks (CNN)
- Offers reinforcement learning
- Contains semi-supervised learning and S3VM
- Reviews model evaluation for unbalanced data
Written for graduate students in computer science, computer engineers, and computer information systems professionals, the updated third edition of Data Mining continues to provide an essential guide to the basic principles of the technology and the most recent developments in the field.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru