Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Chatbots and the Domestication of AI: A Relational Approach, Kempt Hendrik


Варианты приобретения
Цена: 12577.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kempt Hendrik
Название:  Chatbots and the Domestication of AI: A Relational Approach
ISBN: 9783030562892
Издательство: Springer
Классификация:



ISBN-10: 3030562891
Обложка/Формат: Hardcover
Страницы: 183
Вес: 0.39 кг.
Дата издания: 27.09.2020
Серия: Social and cultural studies of robots and ai
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 1 illustrations, black and white; xiv, 183 p. 1 illus.
Размер: 21.01 x 14.81 x 1.27 cm
Читательская аудитория: Professional & vocational
Подзаголовок: A relational approach
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book explores some of the ethical, legal, and social implications of chatbots, or conversational artificial agents. The author introduces current technological challenges of AI and discusses how technological progress and social change influence our understanding of social relationships.


Artificial Companion for Second Language Conversation: Chatbots Support Practice Using Conversation Analysis

Автор: Hцhn Sviatlana
Название: Artificial Companion for Second Language Conversation: Chatbots Support Practice Using Conversation Analysis
ISBN: 3030155064 ISBN-13(EAN): 9783030155063
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Part I, Background.- Setting the Scene.- Learning from Others' Experience.- Part II, Using Conversation Analysis for Dialogue Modelling.- Patterns for Expert-Novice Chats.- Other-Initiated Self-repair with Linguistic Trouble Source.- Exposed Corrections.- Embedded Corrections.- Models of Learner-Error Corrections.- To Correct or Not to Correct.- Method Evaluation.- Part III, Model Validation and Future Directions.- Implementation of an Artificial Conversation Companion.- Future Research Directions.- Part IV, Supplements.- App. A, Data.- App. B, Coding Scheme for Polar Questions.- App. C, Examples.- References.

Developing Enterprise Chatbots

Автор: Boris Galitsky
Название: Developing Enterprise Chatbots
ISBN: 3030042987 ISBN-13(EAN): 9783030042981
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A chatbot is expected to be capable of supporting a cohesive and coherent conversation and be knowledgeable, which makes it one of the most complex intelligent systems being designed nowadays. Designers have to learn to combine intuitive, explainable language understanding and reasoning approaches with high-performance statistical and deep learning technologies. Today, there are two popular paradigms for chatbot construction:1. Build a bot platform with universal NLP and ML capabilities so that a bot developer for a particular enterprise, not being an expert, can populate it with training data;2. Accumulate a huge set of training dialogue data, feed it to a deep learning network and expect the trained chatbot to automatically learn “how to chat”. Although these two approaches are reported to imitate some intelligent dialogues, both of them are unsuitable for enterprise chatbots, being unreliable and too brittle.The latter approach is based on a belief that some learning miracle will happen and a chatbot will start functioning without a thorough feature and domain engineering by an expert and interpretable dialogue management algorithms.Enterprise high-performance chatbots with extensive domain knowledge require a mix of statistical, inductive, deep machine learning and learning from the web, syntactic, semantic and discourse NLP, ontology-based reasoning and a state machine to control a dialogue. This book will provide a comprehensive source of algorithms and architectures for building chatbots for various domains based on the recent trends in computational linguistics and machine learning. The foci of this book are applications of discourse analysis in text relevant assessment, dialogue management and content generation, which help to overcome the limitations of platform-based and data driven-based approaches.Supplementary material and code is available at https://github.com/bgalitsky/relevance-based-on-parse-trees


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия