Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Unsupervised Feature Extraction Applied to Bioinformatics: A Pca Based and TD Based Approach, Taguchi Y-H


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Taguchi Y-H
Название:  Unsupervised Feature Extraction Applied to Bioinformatics: A Pca Based and TD Based Approach
ISBN: 9783030224585
Издательство: Springer
Классификация:







ISBN-10: 3030224589
Обложка/Формат: Paperback
Страницы: 321
Вес: 0.48 кг.
Дата издания: 05.09.2020
Серия: Unsupervised and semi-supervised learning
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 94 illustrations, color; 17 illustrations, black and white; xviii, 321 p. 111 illus., 94 illus. in color.; 94 illustrations, color; 17 illustrations,
Размер: 23.39 x 15.60 x 1.80 cm
Читательская аудитория: Professional & vocational
Подзаголовок: A pca based and td based approach
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition.


Unsupervised Feature Extraction Applied to Bioinformatics

Автор: Y-h. Taguchi
Название: Unsupervised Feature Extraction Applied to Bioinformatics
ISBN: 3030224554 ISBN-13(EAN): 9783030224554
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.

Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Model–Based Processing: An Applied Subspace Identification Approach

Автор: James V. Candy
Название: Model–Based Processing: An Applied Subspace Identification Approach
ISBN: 1119457769 ISBN-13(EAN): 9781119457763
Издательство: Wiley
Рейтинг:
Цена: 19158.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A bridge between the application of subspace-based methods for parameter estimation in signal processing and subspace-based system identification in control systems

Model-Based Processing An Applied Subspace Identification Approach provides expert insight on developing models for designing model-based signal processors (MBSP) employing subspace identification techniques to achieve model-based identification (MBID) and enables readers to evaluate overall performance using validation and statistical analysis methods. Focusing on subspace approaches to system identification problems, this book teaches readers to identify models quickly and incorporate them into various processing problems including state estimation, tracking, detection, classification, controls, communications, and other applications that require reliable models that can be adapted to dynamic environments.

The extraction of a model from data is vital to numerous applications, from the detection of submarines to determining the epicenter of an earthquake to controlling an autonomous vehicles--all requiring a fundamental understanding of their underlying processes and measurement instrumentation. Emphasizing real-world solutions to a variety of model development problems, this text demonstrates how model-based subspace identification system identification enables the extraction of a model from measured data sequences from simple time series polynomials to complex constructs of parametrically adaptive, nonlinear distributed systems. In addition, this resource features:

  • Kalman filtering for linear, linearized, and nonlinear systems; modern unscented Kalman filters; as well as Bayesian particle filters
  • Practical processor designs including comprehensive methods of performance analysis
  • Provides a link between model development and practical applications in model-based signal processing
  • Offers in-depth examination of the subspace approach that applies subspace algorithms to synthesized examples and actual applications
  • Enables readers to bridge the gap from statistical signal processing to subspace identification
  • Includes appendices, problem sets, case studies, examples, and notes for MATLAB

Model-Based Processing: An Applied Subspace Identification Approach is essential reading for advanced undergraduate and graduate students of engineering and science as well as engineers working in industry and academia.

Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data

Автор: Patel Ankur A.
Название: Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
ISBN: 1492035645 ISBN-13(EAN): 9781492035640
Издательство: Wiley
Рейтинг:
Цена: 10136.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия