Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

When Compressive Sensing Meets Mobile Crowdsensing, Kong Linghe, Wang Bowen, Chen Guihai


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kong Linghe, Wang Bowen, Chen Guihai
Название:  When Compressive Sensing Meets Mobile Crowdsensing
ISBN: 9789811377785
Издательство: Springer
Классификация:



ISBN-10: 9811377782
Обложка/Формат: Paperback
Страницы: 127
Вес: 0.20 кг.
Дата издания: 14.08.2020
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 35 illustrations, color; 4 illustrations, black and white; xii, 127 p. 39 illus., 35 illus. in color.
Размер: 23.39 x 15.60 x 0.76 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: It addresses the following main topics: recovering missing data, efficiently collecting data, preserving user privacy, and detecting false data.Mobile crowdsensing, as an emerging sensing paradigm, enables the masses to take part in data collection tasks with the aid of powerful mobile devices.


Privacy-Preserving in Mobile Crowdsensing

Автор: Chuan Zhang, Tong Wu, Youqi Li, Liehuang Zhu
Название: Privacy-Preserving in Mobile Crowdsensing
ISBN: 9811983143 ISBN-13(EAN): 9789811983146
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Mobile crowdsensing is a new sensing paradigm that utilizes the intelligence of a crowd of individuals to collect data for mobile purposes by using their portable devices, such as smartphones and wearable devices. Commonly, individuals are incentivized to collect data to fulfill a crowdsensing task released by a data requester. This “sensing as a service” elaborates our knowledge of the physical world by opening up a new door of data collection and analysis. However, with the expansion of mobile crowdsensing, privacy issues urgently need to be solved. In this book, we discuss the research background and current research process of privacy protection in mobile crowdsensing. In the first chapter, the background, system model, and threat model of mobile crowdsensing are introduced. The second chapter discusses the current techniques to protect user privacy in mobile crowdsensing. Chapter three introduces the privacy-preserving content-based task allocation scheme. Chapter four further introduces the privacy-preserving location-based task scheme. Chapter five presents the scheme of privacy-preserving truth discovery with truth transparency. Chapter six proposes the scheme of privacy-preserving truth discovery with truth hiding. Chapter seven summarizes this monograph and proposes future research directions. In summary, this book introduces the following techniques in mobile crowdsensing: 1) describe a randomizable matrix-based task-matching method to protect task privacy and enable secure content-based task allocation; 2) describe a multi-clouds randomizable matrix-based task-matching method to protect location privacy and enable secure arbitrary range queries; and 3) describe privacy-preserving truth discovery methods to support efficient and secure truth discovery. These techniques are vital to the rapid development of privacy-preserving in mobile crowdsensing.

Multi-dimensional Urban Sensing Using Crowdsensing Data

Автор: Xiang
Название: Multi-dimensional Urban Sensing Using Crowdsensing Data
ISBN: 9811990050 ISBN-13(EAN): 9789811990052
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chaocan Xiang is an Associate Professor at the College of Computer Science, Chongqing University, China. He received his bachelor’s degree and Ph.D. from Nanjing Institute of Communication Engineering, China, in 2009 and 2014, respectively. He subsequently studied at the University of Michigan-Ann Arbor in 2017 (supervised by Prof. Kang G. Shin, IEEE Life Fellow, ACM Fellow). His research interests mainly include UAVs/vehicle-based crowdsensing, urban computing, Internet of Things, Artificial Intelligence, and big data. He has published more than 50 papers, including over 20 in leading venues such as IEEE Transactions on Mobile Computing, IEEE Transactions on Parallel and Distributed Systems, IEEE INFOCOM, and ACM Ubicomp. He has received a best paper award and a best poster award at two international conferences. Panlong Yang is a full Professor at the University of Science and Technology of China. He has been supported by the NSF Jiangsu through a Distinguished Young Scholarship and was honored as a CCF Distinguished Lecturer in 2015. He has published over 150 papers, including 40 in CCF Class A. Since 2012, he has supervised 14 master’s and Ph.D. candidates, including two excellent dissertation winners in Jiangsu Province and the PLA education system. He has been supported by the National Key Development Project and NSFC projects. He has nominated by ACM MobiCom 2009 for the best demo honored mention awards, and won best paper awards at the IEEE MSN and MASS. He has served as general chair of BigCom and TPC chair of IEEE MSN. In addition, he has served as a TPC member of INFOCOM (CCF Class A) and an associate editor of the Journal of Communication of China. He is a Senior Member of the IEEE (2019). Fu Xiao received his Ph.D. in Computer Science and Technology from the Nanjing University of Science and Technology, Nanjing, China, in 2007. He is currently a Professor and Dean of the School of Computer, Nanjing University of Posts and Telecommunications. He has authored more than 60 papers in respected conference proceedings and journals, including IEEE INFOCOM, ACM Mobihoc, IEEE JASC, IEEE/ACM ToN, IEEE TPDS, IEEE TMC, etc. His main research interest is in the Internet of Things. He is a member of the IEEE Computer Society and the Association for Computing Machinery. Xiaochen Fan received his B.S. degree in Computer Science from Beijing Institute of Technology, Beijing, China, in 2013, and his Ph.D. from the University of Technology Sydney, NSW, Australia, in 2021. His research interests include mobile/pervasive computing, deep learning, and Internet of Things (IoT). He has published over 25 peer-reviewed papers in high-quality journals and IEEE/ACM international conference proceedings.

When Compressive Sensing Meets Mobile Crowdsensing

Автор: Linghe Kong; Bowen Wang; Guihai Chen
Название: When Compressive Sensing Meets Mobile Crowdsensing
ISBN: 9811377758 ISBN-13(EAN): 9789811377754
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive introduction to applying compressive sensing to improve data quality in the context of mobile crowdsensing. It addresses the following main topics: recovering missing data, efficiently collecting data, preserving user privacy, and detecting false data.Mobile crowdsensing, as an emerging sensing paradigm, enables the masses to take part in data collection tasks with the aid of powerful mobile devices. However, mobile crowdsensing platforms have yet to be widely adopted in practice, the major concern being the quality of the data collected. There are numerous causes: some locations may generate redundant data, while others may not be covered at all, since the participants are rarely systematically coordinated; privacy is a concern for some people, who don’t wish to share their real-time locations, and therefore some key information may be missing; further, some participants may upload fake data in order to fraudulently gain rewards. To address these problematic aspects, compressive sensing, which works by accurately recovering a sparse signal using very few samples, has proven to offer an effective solution.

Robust Network Compressive Sensing

Автор: Xue
Название: Robust Network Compressive Sensing
ISBN: 3031168283 ISBN-13(EAN): 9783031168284
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book investigates compressive sensing techniques to provide a robust and general framework for network data analytics. The goal is to introduce a compressive sensing framework for missing data interpolation, anomaly detection, data segmentation and activity recognition, and to demonstrate its benefits. Chapter 1 introduces compressive sensing, including its definition, limitation, and how it supports different network analysis applications. Chapter 2 demonstrates the feasibility of compressive sensing in network analytics, the authors we apply it to detect anomalies in the customer care call dataset from a Tier 1 ISP in the United States. A regression-based model is applied to find the relationship between calls and events. The authors illustrate that compressive sensing is effective in identifying important factors and can leverage the low-rank structure and temporal stability to improve the detection accuracy. Chapter 3 discusses that there are several challenges in applying compressive sensing to real-world data. Understanding the reasons behind the challenges is important for designing methods and mitigating their impact. The authors analyze a wide range of real-world traces. The analysis demonstrates that there are different factors that contribute to the violation of the low-rank property in real data. In particular, the authors find that (1) noise, errors, and anomalies, and (2) asynchrony in the time and frequency domains lead to network-induced ambiguity and can easily cause low-rank matrices to become higher-ranked. To address the problem of noise, errors and anomalies in Chap. 4, the authors propose a robust compressive sensing technique. It explicitly accounts for anomalies by decomposing real-world data represented in matrix form into a low-rank matrix, a sparse anomaly matrix, an error term and a small noise matrix. Chapter 5 addresses the problem of lack of synchronization, and the authors propose a data-driven synchronization algorithm. It can eliminate misalignment while taking into account the heterogeneity of real-world data in both time and frequency domains. The data-driven synchronization can be applied to any compressive sensing technique and is general to any real-world data. The authors illustrates that the combination of the two techniques can reduce the ranks of real-world data, improve the effectiveness of compressive sensing and have a wide range of applications. The networks are constantly generating a wealth of rich and diverse information. This information creates exciting opportunities for network analysis and provides insight into the complex interactions between network entities. However, network analysis often faces the problems of (1) under-constrained, where there is too little data due to feasibility and cost issues in collecting data, or (2) over-constrained, where there is too much data, so the analysis becomes unscalable. Compressive sensing is an effective technique to solve both problems. It utilizes the underlying data structure for analysis. Specifically, to solve the under-constrained problem, compressive sensing technologies can be applied to reconstruct the missing elements or predict the future data. Also, to solve the over-constraint problem, compressive sensing technologies can be applied to identify significant elements To support compressive sensing in network data analysis, a robust and general framework is needed to support diverse applications. Yet this can be challenging for real-world data where noise, anomalies and lack of synchronization are common. First, the number of unknowns for network analysis can be much larger than the number of measurements. For example, traffic engineering requires knowing the complete traffic matrix between all source and destination pairs, in order to properly configure traffic and avoid congestion. However, measuring the flow between all source and destination pairs is very expensive or even infeasible. Reconstructing data from a sm


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия