Integral Operators in Non-Standard Function Spaces: Volume 1: Variable Exponent Lebesgue and Amalgam Spaces, Kokilashvili Vakhtang, Meskhi Alexander, Rafeiro Humberto
Описание: IV: Grand Lebesgue Spaces.- 14 Maximal Functions and Potentials.- 15 Grand Lebesgue Spaces on Sets with Infinite Measure.- V: Grand Morrey Spaces.- 16 Maximal Functions, Fractional and Singular Integrals.- 17 Multiple Operators on the Cone of Decreasing Functions.- A: Grand Bochner Spaces.- Bibliography.- Symbol Index.- Subject Index.IV: Grand Lebesgue Spaces.- 14 Maximal Functions and Potentials.- 15 Grand Lebesgue Spaces on Sets with Infinite Measure.- V: Grand Morrey Spaces.- 16 Maximal Functions, Fractional and Singular Integrals.- 17 Multiple Operators on the Cone of Decreasing Functions.- A: Grand Bochner Spaces.- Bibliography.- Symbol Index.- Subject Index.
Автор: Castillo Название: An Introductory Course in Lebesgue Spaces ISBN: 3319300326 ISBN-13(EAN): 9783319300320 Издательство: Springer Рейтинг: Цена: 9362.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is devoted exclusively to Lebesgue spaces and their direct derived spaces. Unique in its sole dedication, this book explores Lebesgue spaces, distribution functions and nonincreasing rearrangement. Moreover, it also deals with weak, Lorentz and the more recent variable exponent and grand Lebesgue spaces with considerable detail to the proofs. The book also touches on basic harmonic analysis in the aforementioned spaces. An appendix is given at the end of the book giving it a self-contained character. This work is ideal for teachers, graduate students and researchers.
Автор: Komornik Название: Lectures on Functional Analysis and the Lebesgue Integral ISBN: 1447168100 ISBN-13(EAN): 9781447168102 Издательство: Springer Рейтинг: Цена: 9362.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small ?p spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikod?m.Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erd?s and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included.Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.
Автор: Vakhtang Kokilashvili; Alexander Meskhi; Humberto Название: Integral Operators in Non-Standard Function Spaces ISBN: 3319210173 ISBN-13(EAN): 9783319210179 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Holder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them.
The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria.
The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.
Автор: Kokilashvili, Vakhtang Meskhi, Alexander Samko, Stefan (faculdade De Ciencias E Tecnologia, Universidade Do Algarve, Faro, Portugal) Название: Integral operators in non-standard function spaces ISBN: 3319210149 ISBN-13(EAN): 9783319210148 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Preface.- I: Variable Exponent Lebesgue and Amalgam spaces.- 1 Hardy Type Operators.- 2 Oscillating weights.- 3 Kernel Integral Operators.- 4 Two-Weight Estimates.- 5 One-sided Operators.- 6 Two-weight Inequalities for Fractional Maximal Functions.- 7 Hypersingular Integrals.- 8 Description of the Range of Potentials 213.- 9 More on Compactness.- 10 Applications to Singular Integral Equations.- II: Hцlder Spaces of Variable Order.- 11 Variable Order Hцlder Spaces.- III: Variable Exponent Morrey-Campanato and Herz Spaces.- 12 Morrey Type Spaces; Constant Exponents.- 13 Morrey Type Spaces; Variable Exponents.- Bibliography.- Symbol Index.- Subject Index.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru