Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Large-Scale Graph Processing Using Apache Giraph, Sakr Sherif, Orakzai Faisal Moeen, Abdelaziz Ibrahim


Варианты приобретения
Цена: 7685.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sakr Sherif, Orakzai Faisal Moeen, Abdelaziz Ibrahim
Название:  Large-Scale Graph Processing Using Apache Giraph
ISBN: 9783319837352
Издательство: Springer
Классификация:


ISBN-10: 3319837354
Обложка/Формат: Paperback
Страницы: 197
Вес: 0.32 кг.
Дата издания: 07.07.2018
Язык: English
Издание: Softcover reprint of
Иллюстрации: 87 illustrations, color; 15 illustrations, black and white; xxv, 197 p. 102 illus., 87 illus. in color.
Размер: 23.39 x 15.60 x 1.19 cm
Читательская аудитория: General (us: trade)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data.


Big Data Processing Using Spark in Cloud

Автор: Mamta Mittal; Valentina E. Balas; Lalit Mohan Goya
Название: Big Data Processing Using Spark in Cloud
ISBN: 9811344485 ISBN-13(EAN): 9789811344480
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data’s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data.The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.

Big Data Processing Using Spark in Cloud

Автор: Mittal
Название: Big Data Processing Using Spark in Cloud
ISBN: 9811305498 ISBN-13(EAN): 9789811305498
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book describes the emergence of big data technologies and the role of Spark in the entire big data stack.

Large-Scale Graph Processing Using Apache Giraph

Автор: Sherif Sakr; Faisal Moeen Orakzai; Ibrahim Abdelaz
Название: Large-Scale Graph Processing Using Apache Giraph
ISBN: 3319474308 ISBN-13(EAN): 9783319474304
Издательство: Springer
Рейтинг:
Цена: 6288.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data.

Beginning Apache Spark Using Azure Databricks: Unleashing Large Cluster Analytics in the Cloud

Автор: Ilijason Robert
Название: Beginning Apache Spark Using Azure Databricks: Unleashing Large Cluster Analytics in the Cloud
ISBN: 1484257804 ISBN-13(EAN): 9781484257807
Издательство: Springer
Рейтинг:
Цена: 6288.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Beginning-Intermediate user level

Pattern recognition on oriented matroids /

Автор: Matveev, Andrey O.,
Название: Pattern recognition on oriented matroids /
ISBN: 3110530716 ISBN-13(EAN): 9783110530711
Издательство: Walter de Gruyter
Рейтинг:
Цена: 18586.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities - the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon.

The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs.

Contents
Oriented Matroids, the Pattern Recognition Problem, and Tope Committees
Boolean Intervals
Dehn-Sommerville Type Relations
Farey Subsequences
Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets
Committees of Set Families, and Relative Blocking Constructions in Posets
Layers of Tope Committees
Three-Tope Committees
Halfspaces, Convex Sets, and Tope Committees
Tope Committees and Reorientations of Oriented Matroids
Topes and Critical Committees
Critical Committees and Distance Signals
Symmetric Cycles in the Hypercube Graphs

Graphs for Pattern Recognition: Infeasible Systems of Linear Inequalities

Автор: Damir Gainanov
Название: Graphs for Pattern Recognition: Infeasible Systems of Linear Inequalities
ISBN: 3110480131 ISBN-13(EAN): 9783110480139
Издательство: Walter de Gruyter
Рейтинг:
Цена: 18586.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as building blocks of geometric decision rules for pattern recognition.Infeasible systems of linear inequalities prove to be a key object in pattern recognition problems described in geometric terms thanks to the committee method. Such infeasible systems of inequalities represent an important special subclass of infeasible systems of constraints with a monotonicity property - systems whose multi-indices of feasible subsystems form abstract simplicial complexes (independence systems), which are fundamental objects of combinatorial topology.The methods of data mining and machine learning discussed in this monograph form the foundation of technologies like big data and deep learning, which play a growing role in many areas of human-technology interaction and help to find solutions, better solutions and excellent solutions. Contents: PrefacePattern recognition, infeasible systems of linear inequalities, and graphsInfeasible monotone systems of constraintsComplexes, (hyper)graphs, and inequality systemsPolytopes, positive bases, and inequality systemsMonotone Boolean functions, complexes, graphs, and inequality systemsInequality systems, committees, (hyper)graphs, and alternative coversBibliographyList of notationIndex


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия