Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Welding and Cutting Case Studies with Supervised Machine Learning, Vendan S. Arungalai, Kamal Rajeev, Karan Abhinav


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Vendan S. Arungalai, Kamal Rajeev, Karan Abhinav
Название:  Welding and Cutting Case Studies with Supervised Machine Learning
ISBN: 9789811393815
Издательство: Springer
Классификация:



ISBN-10: 9811393818
Обложка/Формат: Hardcover
Страницы: 249
Вес: 0.54 кг.
Дата издания: 04.06.2020
Серия: Engineering applications of computational methods
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 35 tables, color; 35 illustrations, color; 50 illustrations, black and white; approx. 180 p. 85 illus., 35 illus. in color.
Размер: 23.39 x 15.60 x 1.60 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents machine learning as a set of pre-requisites, co-requisites, and post-requisites, focusing on mathematical concepts and engineering applications in advanced welding and cutting processes.


Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning

Автор: Thorsten Wuest
Название: Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning
ISBN: 3319176102 ISBN-13(EAN): 9783319176109
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. In practice, this method can be used to identify the most important process parameters and state characteristics, the so-called state drivers, of a manufacturing system.

Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning

Автор: Thorsten Wuest
Название: Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning
ISBN: 3319386980 ISBN-13(EAN): 9783319386980
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. In practice, this method can be used to identify the most important process parameters and state characteristics, the so-called state drivers, of a manufacturing system.

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine lear

Автор: Amr Tarek
Название: Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine lear
ISBN: 1838826041 ISBN-13(EAN): 9781838826048
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems

Key Features

  • Delve into machine learning with this comprehensive guide to scikit-learn and scientific Python
  • Master the art of data-driven problem-solving with hands-on examples
  • Foster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithms

Book Description

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits.

The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You'll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you'll gain a thorough understanding of its theory and learn when to apply it. As you advance, you'll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms.

By the end of this machine learning book, you'll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You'll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.

What you will learn

  • Understand when to use supervised, unsupervised, or reinforcement learning algorithms
  • Find out how to collect and prepare your data for machine learning tasks
  • Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff
  • Apply supervised and unsupervised algorithms to overcome various machine learning challenges
  • Employ best practices for tuning your algorithm's hyper parameters
  • Discover how to use neural networks for classification and regression
  • Build, evaluate, and deploy your machine learning solutions to production

Who this book is for

This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.

Supervised Machine Learning

Автор: Kolosova, Tatiana , Berestizhevsky, Samuel
Название: Supervised Machine Learning
ISBN: 0367277328 ISBN-13(EAN): 9780367277321
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods.

Supervised machine learning for kids (tinker toddlers)

Автор: Dr. Dhoot, Dhoot
Название: Supervised machine learning for kids (tinker toddlers)
ISBN: 1950491072 ISBN-13(EAN): 9781950491070
Издательство: Неизвестно
Рейтинг:
Цена: 3492.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Tinker Toddlers is a series designed to introduce first nonfiction emerging STEM concepts to babies, toddlers, and preschoolers. Dion is not an ordinary machine. He has a superpower - he can learn. And Aria knows exactly what to teach him. Follow along as she teaches Dion all about cats and dogs.

Applied Supervised Learning with R

Автор: Ramasubramanian Karthik, Moolayil Jojo
Название: Applied Supervised Learning with R
ISBN: 1838556338 ISBN-13(EAN): 9781838556334
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Applied Supervised Learning with R will make you a pro at identifying your business problem, selecting the best supervised machine learning algorithm to solve it, and fine-tuning your model to exactly deliver your needs without overfitting itself.

Supervised Learning with Python: Concepts and Practical Implementation Using Python

Автор: Verdhan Vaibhav
Название: Supervised Learning with Python: Concepts and Practical Implementation Using Python
ISBN: 1484261550 ISBN-13(EAN): 9781484261552
Издательство: Springer
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chapter 1: Introduction to Supervised LearningChapter Goal: Start the journey of the readers on supervised learning
No of pages: 30-40
Sub -Topics
1. Machine learning and how is it different from software engineering?

2. Discuss reasons for machine learning being popular
3. Compare between supervised, semi-supervised and unsupervised algorithms
4. Statistical methods to get significant variables
5. The use cases of machine learning and respective use cases for each of supervised, semi-supervised and unsupervised algorithms
Chapter 2: Supervised Learning for Regression AnalysisChapter Goal: Embrace the core concepts of supervised learning to predict continuous variables
No of pages: 40-50
Sub - Topics
1. Supervised learning algorithms for predicting continuous variables

2. Explain mathematics behind the algorithms
3. Develop Python solution using linear regression, decision tree, random forest, SVM and neural network
4. Measure the performance of the algorithms using r square, RMSE etc.
5. Compare and contrast the performance of all the algorithms
6. Discuss the best practices and the common issues faced like data cleaning, null values etc.
Chapter 3: Supervised Learning for Classification ProblemsChapter Goal: Discuss the concepts of supervised learning for solving classification problems
No of pages: 30-40
Sub - Topics:
1. Discuss classification problems for supervised learning

2. Examine logistic regression, decision tree, random forest, knn and naпve Bayes. Understand the statistics and mathematics behind each
3. Discuss ROC curve, akike value, confusion matrix, precision/recall etc
4. Compare the performance of all the algorithms
5. Discuss the tips and tricks, best practices and common pitfalls like a bias-variance tradeoff, data imbalance etc.
Chapter 4: Supervised Learning for Classification Problems-Advanced
Chapter Goal: cover advanced classification algorithms for supervised learning algorithms
No of pages:30-40
Sub - Topics:

1. Refresh classification problems for supervised learning
2. Examine gradient boosting and extreme gradient boosting, support vector machine and neural network
3. Compare the performance of all the algorithms
4. Discuss the best practices and common pitfalls, tips and tricks
Chapter 5: End-to-End Model DeploymentChapter Goal: guide the reader on the end-to-end process of deploying a supervised learning model in production
No of pages:25-30
1. Meaning of model deployment

2. Various steps in the model deployment process
3. Preparations to be made like settings, environment etc.
4. Various use cases in the deployment
5. Practical tips in model deployment

Advanced Machine Learning with Python: Solve data science problems by mastering cutting-edge machine learning techniques in Python

Автор: Hearty John
Название: Advanced Machine Learning with Python: Solve data science problems by mastering cutting-edge machine learning techniques in Python
ISBN: 1784398632 ISBN-13(EAN): 9781784398637
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With the help of advanced machine learning techniques, engaging activities, and detailed code examples, this book will train you to find solutions for challenging data science problems and help you develop the skills needed for feature selection and feature engineering.

Machine Tool Vibrations and Cutting Dynamics

Автор: Brandon C. Gegg; C. Steve Suh; Albert C. J. Luo
Название: Machine Tool Vibrations and Cutting Dynamics
ISBN: 1489997539 ISBN-13(EAN): 9781489997531
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Exploring the fundamentals of cutting dynamics from the perspective of discontinuous systems theory, this volume shows how to use coupling, interaction, and different cutting states to mitigate machining instability and enable better machine tool design.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия