Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Deep Reinforcement Learning with Python: With Pytorch, Tensorflow and Openai Gym, Sanghi Nimish


Варианты приобретения
Цена: 4593.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sanghi Nimish
Название:  Deep Reinforcement Learning with Python: With Pytorch, Tensorflow and Openai Gym
ISBN: 9781484268087
Издательство: Springer
Классификация:

ISBN-10: 1484268083
Обложка/Формат: Paperback
Страницы: 382
Вес: 0.70 кг.
Дата издания: 19.06.2021
Язык: English
Размер: 25.40 x 17.78 x 2.11 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: Chapter 1: Introduction to Deep Reinforcement LearningChapter Goal: Introduce the reader to field of reinforcement learning and setting the context of what they will learn in rest of the bookSub -Topics1. Deep reinforcement learning2. Examples and case studies3. Types of algorithms with mind-map4. Libraries and environment setup5. Summary
Chapter 2: Markov Decision ProcessesChapter Goal: Help the reader understand models, foundations on which all algorithms are built. Sub - Topics 1. Agent and environment2. Rewards3. Markov reward and decision processes4. Policies and value functions5. Bellman equations
Chapter 3: Model Based Algorithms Chapter Goal: Introduce reader to dynamic programming and related algorithms Sub - Topics:
1. Introduction to OpenAI Gym environment2. Policy evaluation/prediction3. Policy iteration and improvement4. Generalised policy iteration5. Value iteration
Chapter 4: Model Free ApproachesChapter Goal: Introduce Reader to model free methods which form the basis for majority of current solutionsSub - Topics: 1. Prediction and control with Monte Carlo methods2. Exploration vs exploitation3. TD learning methods4. TD control5. On policy learning using SARSA6. Off policy learning using q-learning
Chapter 5: Function Approximation Chapter Goal: Help readers understand value function approximation and Deep Learning use in Reinforcement Learning. 1. Limitations to tabular methods studied so far2. Value function approximation3. Linear methods and features used4. Non linear function approximation using deep Learning
Chapter 6: Deep Q-Learning
Chapter Goal: Help readers understand core use of deep learning in reinforcement learning. Deep q learning and many of its variants are introduced here with in depth code exercises. 1. Deep q-networks (DQN)2. Issues in Naive DQN 3. Introduce experience replay and target networks4. Double q-learning (DDQN)5. Duelling DQN6. Categorical 51-atom DQN (C51)7. Quantile regression DQN (QR-DQN)8. Hindsight experience replay (HER)
Chapter 7: Policy Gradient Algorithms Chapter Goal: Introduce reader to concept of policy gradients and related theory. Gain in depth knowledge of common policy gradient methods through hands-on exercises1. Policy gradient approach and its advantages2. The policy gradient theorem3. REINFORCE algorithm4. REINFORCE with baseline5. Actor-critic methods6. Advantage actor critic (A2C/A3C)7. Proximal policy optimization (PPO)8. Trust region policy optimization (TRPO)
Chapter 8: Combining Policy Gradients and Q-Learning Chapter Goal: Introduce reader to the trade offs between two approaches ways to connect together the two seemingly dissimilar approaches. Gain in depth knowledge of some land mark approaches.1. Tradeoff between policy gradients and q-learning2. The connection3. Deep deterministic policy gradient (DDPG)4. Twin delayed DDPG (TD3)5. Soft actor critic (SAC)
Chapter 9: Integrated Learning and Planning Chapter Goal: Introduce reader to the scalable approaches which are sample efficient for scalable problems.1. Model based reinforcement learning



      Новое издание

Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

Автор: Lapan Maxim
Название: Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more
ISBN: 1788834240 ISBN-13(EAN): 9781788834247
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is a practical, developer-oriented introduction to deep reinforcement learning (RL). Explore the theoretical concepts of RL, before discovering how deep learning (DL) methods and tools are making it possible to solve more complex and challenging problems than ever before. Apply deep RL methods to training your agent to beat arcade ...

Python Deep Learning: Develop Your First Neural Network in Python Using Tensorflow, Keras, and Pytorch

Автор: Samuel Burns
Название: Python Deep Learning: Develop Your First Neural Network in Python Using Tensorflow, Keras, and Pytorch
ISBN: 1092562222 ISBN-13(EAN): 9781092562225
Издательство: Неизвестно
Цена: 2585.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Build your Own Neural Network today. Through easy-to-follow instruction and examples, you'll learn the fundamentals of Deep learning and build your very own Neural Network in Python using TensorFlow, Keras, PyTorch, and Theano. While you have the option of spending thousands of dollars on big and boring textbooks, we recommend getting the same pieces of information for a fraction of the cost. So Get Your Copy Now Why this book?Book ObjectivesThe following are the objectives of this book:

  • To help you understand deep learning in detail
  • To help you know how to get started with deep learning in Python by setting up the coding environment.
  • To help you transition from a deep learning Beginner to a Professional.
  • To help you learn how to develop a complete and functional artificial neural network model in Python on your own.
Who this Book is for? The author targets the following groups of people:
  • Anybody who is a complete beginner to deep learning with Python.
  • Anybody in need of advancing their Python for deep learning skills.
  • Professors, lecturers or tutors who are looking to find better ways to explain Deep Learning to their students in the simplest and easiest way.
  • Students and academicians, especially those focusing on python programming, neural networks, machine learning, and deep learning.
What do you need for this Book? You are required to have installed the following on your computer:
  • Python 3.X.
  • TensorFlow .
  • Keras .
  • PyTorch
The Author guides you on how to install the rest of the Python libraries that are required for deep learning.The author will guide you on how to install and configure the rest. What is inside the book?
  • What is Deep Learning?
  • An Overview of Artificial Neural Networks.
  • Exploring the Libraries.
  • Installation and Setup.
  • TensorFlow Basics.
  • Deep Learning with TensorFlow.
  • Keras Basics.
  • PyTorch Basics.
  • Creating Convolutional Neural Networks with PyTorch.
  • Creating Recurrent Neural Networks with PyTorch.
From the back cover.Deep learning is part of machine learning methods based on learning data representations. This book written by Samuel Burns provides an excellent introduction to deep learning methods for computer vision applications. The author does not focus on too much math since this guide is designed for developers who are beginners in the field of deep learning. The book has been grouped into chapters, with each chapter exploring a different feature of the deep learning libraries that can be used in Python programming language. Each chapter features a unique Neural Network architecture including Convolutional Neural Networks. After reading this book, you will be able to build your own Neural Networks using Tenserflow, Keras, and PyTorch. Moreover, the author has provided Python codes, each code performing a different task. Corresponding explanations have also been provided alongside each piece of code to help the reader understand the meaning of the various lines of the code. In addition to this, screenshots showing the output that each code should return have been given. The author has used a simple language to make it easy even for beginners to understand.
Deep Learning with Python: The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch

Автор: Gйron Daniel
Название: Deep Learning with Python: The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
ISBN: 1801944008 ISBN-13(EAN): 9781801944007
Издательство: Неизвестно
Рейтинг:
Цена: 5100.00 р.
Наличие на складе: Нет в наличии.

Описание:

Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?


This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off

This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.


By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.


You will learn:


1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;

2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;

3. How to install the three Python libraries to help you get started;

4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;

5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;

6. The basics of the Keras library and some of the deep learning you can do with this library;

7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;

8. And so much more


Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning

Tensorflow for Deep Learning: From Linear Regression to Reinforcement Learning

Автор: Ramsundar Bharath, Zadeh Reza Bosagh
Название: Tensorflow for Deep Learning: From Linear Regression to Reinforcement Learning
ISBN: 1491980451 ISBN-13(EAN): 9781491980453
Издательство: Wiley
Рейтинг:
Цена: 8869.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Learn how to solve challenging machine learning problems with TensorFlow, Google`s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals.

PyTorch 1.0 Reinforcement Learning Cookbook

Автор: Liu Yuxi (Hayden)
Название: PyTorch 1.0 Reinforcement Learning Cookbook
ISBN: 1838551964 ISBN-13(EAN): 9781838551964
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library.

TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

Автор: Palanisamy Praveen
Название: TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications
ISBN: 183898254X ISBN-13(EAN): 9781838982546
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This cookbook will help you to gain a solid understanding of deep reinforcement learning (RL) algorithms with the help of concise, easy-to-follow implementations from scratch. You`ll learn how to implement these algorithms with minimal code and develop AI applications to solve real-world and business problems using RL.

Reinforcement Learning with Tensorflow

Автор: Dutta Sayon
Название: Reinforcement Learning with Tensorflow
ISBN: 1788835727 ISBN-13(EAN): 9781788835725
Издательство: Неизвестно
Цена: 10114.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement learning allows you to develop intelligent, self-learning systems. This book shows you how to put the concepts of Reinforcement Learning to train efficient models.You will use popular reinforcement learning algorithms to implement use-cases in image processing and NLP, by combining the power of TensorFlow and OpenAI Gym.

TensorFlow Reinforcement Learning Quick Start Guide

Автор: Balakrishnan Kaushik
Название: TensorFlow Reinforcement Learning Quick Start Guide
ISBN: 1789533589 ISBN-13(EAN): 9781789533583
Издательство: Неизвестно
Рейтинг:
Цена: 4964.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ...

Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch

Автор: Auffarth Ben
Название: Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch
ISBN: 1789133963 ISBN-13(EAN): 9781789133967
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: If you are looking to build next-generation AI solutions for work or even for your pet projects, you`ll find this cookbook useful. With the help of easy-to-follow recipes, this book will take you through the advanced AI and machine learning approaches and algorithms that are required to build smart models for problem-solving.

Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBER

Автор: Rothman Denis
Название: Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBER
ISBN: 1800565798 ISBN-13(EAN): 9781800565791
Издательство: Неизвестно
Рейтинг:
Цена: 18390.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume reports on excavations in advance of the development of a site in Norton-on-Derwent, North Yorkshire close to the line of the main Roman road running from the crossing point of the River Derwent near Malton Roman fort to York. This site provided much additional information on aspects of the poorly understood `small town` of Delgovicia.

Deep Learning with Python: The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch

Автор: Gйron Daniel
Название: Deep Learning with Python: The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
ISBN: 1914306635 ISBN-13(EAN): 9781914306631
Издательство: Неизвестно
Рейтинг:
Цена: 4548.00 р.
Наличие на складе: Нет в наличии.

Описание:

Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?


This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off

This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.


By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.


You will learn:


1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;

2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;

3. How to install the three Python libraries to help you get started;

4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;

5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;

6. The basics of the Keras library and some of the deep learning you can do with this library;

7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;

8. And so much more


Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning

Deep Learning with Python: The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch

Автор: Gйron Daniel
Название: Deep Learning with Python: The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
ISBN: 1914306120 ISBN-13(EAN): 9781914306129
Издательство: Неизвестно
Рейтинг:
Цена: 2755.00 р.
Наличие на складе: Нет в наличии.

Описание:

Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?


This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off

This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.


By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.


You will learn:


1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;

2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;

3. How to install the three Python libraries to help you get started;

4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;

5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;

6. The basics of the Keras library and some of the deep learning you can do with this library;

7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;

8. And so much more


Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия