Описание: This book focuses on the design of efficient & dynamic methods to allocate divisible resources under various auction mechanisms, discussing their applications in power & microgrid systems and the V2G & EV charging coordination problems in smart grids.
This book introduces the optimal online charging control of electric vehicles (EVs) and battery energy storage systems (BESSs) in smart grids. The ultimate goal is to minimize the total energy cost as well as reduce the fluctuation of the total power flow caused by the integration of the EVs and renewable energy generators.
Using both theoretic analysis and data-driven numerical results, the authors reveal the effectiveness and efficiency of the proposed control techniques. A major benefit of these control techniques is their practicality, since they do not rely on any non-causal knowledge of future information.
Researchers, operators of power grids, and EV users will find this to be an exceptional resource. It is also suitable for advanced-level students of computer science interested in networks, electric vehicles, and energy systems.
The Paris Agreement on Climate Change adopted on December 12, 2015 is a voluntary effort to reduce greenhouse gas emissions. In order to reach the goals of this agreement, there is a need to generate electricity without greenhouse gas emissions and to electrify transportation. An infrastructure of SPCSs can help accomplish both of these transitions. Globally, expenditures associated with the generation, transmission, and use of electricity are more than one trillion dollars per year. Annual transportation expenditures are also more than one trillion dollars per year. Almost everyone will be impacted by these changes in transportation, solar power generation, and smart grid developments. The benefits of reducing greenhouse gas emissions will differ with location, but all will be impacted.
This book is about the benefits associated with adding solar panels to parking lots to generate electricity, reduce greenhouse gas emissions, and provide shade and shelter from rain and snow. The electricity can flow into the power grid or be used to charge electric vehicles (EVs). Solar powered charging stations (SPCSs) are already in many parking lots in many countries of the world. The prices of solar panels have decreased recently, and about 30% of the new U.S. electrical generating capacity in 2015 was from solar energy. More than one million EVs are in service in 2016, and there are significant benefits associated with a convenient charging infrastructure of SPCSs to support transportation with electric vehicles.
Solar Powered Charging Infrastructure for Electric Vehicles: A Sustainable Development aims to share information on pathways from our present situation to a world with a more sustainable transportation system with EVs, SPCSs, a modernized smart power grid with energy storage, reduced greenhouse gas emissions, and better urban air quality. Covering 200 million parking spaces with solar panels can generate about 1/4 of the electricity that was generated in 2014 in the United States. Millions of EVs with 20 to 50 kWh of battery storage can help with the transition to wind and solar power generation through owners responding to time-of-use prices.
Written for all audiences, high school and college teachers and students, those in industry and government, and those involved in community issues will benefit by learning more about the topics addressed in the book. Those working with electrical power and transportation, who will be in the middle of the transition, will want to learn about all of the challenges and developments that are addressed here.
This book focuses on the design of decentralized optimization methods applied to charging strategies for large-scale PEVs in electrical power systems. It studies several classes of charging coordination problems in large-scale PEVs by considering the distinct characteristics of PEV populations and electrical power systems, and subsequently designs decentralized methods based on distinct optimization schemes – such as non-cooperative games, mean-field games, and auction games – to achieve optimal/nearly optimal charging strategies. In closing, several performance aspects of the proposed algorithms, such as their convergence, computational complexity and optimality etc., are rigorously verified and demonstrated in numerical simulations.
Given its scope, the book will benefit researchers, engineers, and graduate students in the fields of optimization, game theory, auction games, electrical power systems, etc., and help them design decentralized methods to implement optimal charging strategies in large-scale PEVs.
Описание: Data structures allow organizing data efficiently. Their suitable implementation can provide a complete solution that acts like reusable code. In this book, you will learn how to use various data structures while developing in the C# language as well as how to implement some of the most common algorithms used with such data structures.
Автор: H.E. Jordan Название: Energy-Efficient Electric Motors and their Applications ISBN: 1489914676 ISBN-13(EAN): 9781489914675 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Jordan explains-in a clear manner-the technology of energy efficient electric motors including motor losses, testing, and efficiency labeling. He also discusses how to calculate the return on investment for an energy efficient motor in addition to several other subjects related to effective motor applications.
Автор: Jones Kevin B., Jervey Benjamin B., Roche Matthew Название: The Electric Battery: Charging Forward to a Low-Carbon Future ISBN: 1440849013 ISBN-13(EAN): 9781440849015 Издательство: Bloomsbury Цена: 6386.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Now more than ever, consumers want to understand not only the basic facts behind the electric battery and the challenges of battery storage in everyday devices, including vehicles, but also whether increased, widespread application of battery technology has real environmental benefits that could change the future of our planet. Is 21st-century battery technology the foundation on which our low-carbon future will be built? The Electric Battery: Charging Forward to a Low-Carbon Future documents the long history of the battery and identifies the reasons it is now a key to achieving a low-carbon world.
The book provides an unprecedented and easy-to-understand explanation of both the policy issues and technological challenges facing the battery in the quest to significantly reduce humanity's collective "carbon footprint" on the earth. Readers will be able to intelligently evaluate the chances of electric storage batteries ultimately becoming as mainstream as petroleum-product-fueled infrastructure and vehicles. The chapters in the book break down the complexity of the technology and elucidate the historic confluence of events that makes battery technology economically viable to any reader looking to understand the technological and policy breakthroughs that could enable a low-carbon future--for this generation as well as for subsequent ones.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru