Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Federated Learning: Privacy and Incentive, Yang Qiang, Fan Lixin, Yu Han


Варианты приобретения
Цена: 10480.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Yang Qiang, Fan Lixin, Yu Han
Название:  Federated Learning: Privacy and Incentive
ISBN: 9783030630751
Издательство: Springer
Классификация:





ISBN-10: 3030630757
Обложка/Формат: Paperback
Страницы: 286
Вес: 0.42 кг.
Дата издания: 26.11.2020
Язык: English
Размер: 23.39 x 15.60 x 1.57 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications.


Proceedings of the 2015 Federated Conference on Software Development and Object Technologies

Автор: Janech
Название: Proceedings of the 2015 Federated Conference on Software Development and Object Technologies
ISBN: 3319465341 ISBN-13(EAN): 9783319465340
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the proceedings of the International Conference SDOT which was organized at the University in ?ilina, Faculty of Management Sciences and Informatics, Slovak Republic in November 19, 2015. The conference was truly international both in terms of the amount of foreign contributions and in terms of composition of steering and scientific committees. The book and the conference serves as a platform of professional exchange of knowledge and experience for the latest trends in software development and object-oriented technologies (theory and practice). This proceedings present information on the latest developments and mediate the exchange of experience between practitioners and academia.

Federated Learning

Автор: Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, Han Yu
Название: Federated Learning
ISBN: 1681736977 ISBN-13(EAN): 9781681736976
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12335.00 р.
Наличие на складе: Нет в наличии.

Описание: How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Federated Learning

Автор: Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, Han Yu
Название: Federated Learning
ISBN: 1681736993 ISBN-13(EAN): 9781681736990
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 15523.00 р.
Наличие на складе: Нет в наличии.

Описание: How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Coordination Models and Languages: 22nd Ifip Wg 6.1 International Conference, Coordination 2020, Held as Part of the 15th International Federated Conf

Автор: Bliudze Simon, Bocchi Laura
Название: Coordination Models and Languages: 22nd Ifip Wg 6.1 International Conference, Coordination 2020, Held as Part of the 15th International Federated Conf
ISBN: 3030500284 ISBN-13(EAN): 9783030500283
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the 22nd International Conference on Coordination Models and Languages, COORDINATION 2020, which was due to be held in Valletta, Malta, in June 2020, as part of the 15th International Federated Conference on Distributed Computing Techniques, DisCoTec 2020.

New Frontiers in Information and Production Systems Modelling and Analysis: Incentive Mechanisms, Competence Management, Knowledge-Based Production

Автор: Rуżewski Przemyslaw, Novikov Dmitry, Bakhtadze Natalia
Название: New Frontiers in Information and Production Systems Modelling and Analysis: Incentive Mechanisms, Competence Management, Knowledge-Based Production
ISBN: 331937270X ISBN-13(EAN): 9783319372709
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book demonstrates how to apply modern approaches to complex system control in practical applications involving knowledge-based systems. Moreover, specialised forms of knowledge-based systems (like e-learning, social network, and production systems) are introduced with a new formal approach to knowledge system modelling.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия