Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Reverse Hypothesis Machine Learning: A Practitioner`s Perspective, Kulkarni Parag


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kulkarni Parag
Название:  Reverse Hypothesis Machine Learning: A Practitioner`s Perspective
ISBN: 9783319856261
Издательство: Springer
Классификация:




ISBN-10: 331985626X
Обложка/Формат: Paperback
Страницы: 138
Вес: 0.23 кг.
Дата издания: 25.07.2018
Серия: Intelligent systems reference library
Язык: English
Издание: Softcover reprint of
Иллюстрации: 9 illustrations, color; 52 illustrations, black and white; xvi, 138 p. 61 illus., 9 illus. in color.
Размер: 23.39 x 15.60 x 0.84 cm
Читательская аудитория: General (us: trade)
Подзаголовок: A practitioner`s perspective
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. The book is useful as a reference book for machine learning researchers and professionals as well as machine intelligence enthusiasts.


Reverse Hypothesis Machine Learning

Автор: Parag Kulkarni
Название: Reverse Hypothesis Machine Learning
ISBN: 3319553119 ISBN-13(EAN): 9783319553115
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces a paradigm of reverse hypothesis machines (RHM), focusing on knowledge innovation and machine learning. The book is useful as a reference book for machine learning researchers and professionals as well as machine intelligence enthusiasts.

Mechanizing Hypothesis Formation

Автор: P. Hajek; T. Havranek
Название: Mechanizing Hypothesis Formation
ISBN: 3540087389 ISBN-13(EAN): 9783540087380
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Plotkin divides a logic of discovery into a logic of induction: studying the notion of justification of a hypothesis, and a logic of suggestion: studying methods of suggesting reasonable hypotheses. The rest falls into two parts: Part A - a logic of induction, and Part B - a logic of suggestion.

Machine Learning with Health Care Perspective: Machine Learning and Healthcare

Автор: Jain Vishal, Chatterjee Jyotir Moy
Название: Machine Learning with Health Care Perspective: Machine Learning and Healthcare
ISBN: 3030408493 ISBN-13(EAN): 9783030408497
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics.

Data Analytics in Bioinformatics: A Machine Learning Perspective

Автор: Satpathy Rabinarayan, Choudhury Tanupriya, Satpathy Suneeta
Название: Data Analytics in Bioinformatics: A Machine Learning Perspective
ISBN: 1119785537 ISBN-13(EAN): 9781119785538
Издательство: Wiley
Рейтинг:
Цена: 28979.00 р.
Наличие на складе: Поставка под заказ.

Описание: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Machine Behavior Design and Analysis: A Consensus Perspective

Автор: Zhang Yinyan, Li Shuai
Название: Machine Behavior Design and Analysis: A Consensus Perspective
ISBN: 9811532303 ISBN-13(EAN): 9789811532306
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction to Collective Machine Behavior

1.1 Collective Machine Behavior

1.2 Consensus

1.3 Theoretical Tools

1.4 Chapter Summary

References

2 Second-Order Min-Consensus

2.1 Introduction

2.2 Preliminary and Problem Formulation

2.3 Min-Consensus Under Switching Topology

2.4 Simulation Example

2.5 Chapter Summary

References

3 Consensus of High-Order Discrete-TimeMulti-Agent Systems

3.1 Introduction

3.2 Problem Description

3.3 Protocol Design

3.4 Theoretical Results

3.5 Illustrative Examples

3.6 Chapter Summary

References

4 Continuous-Time Biased Min-Consensus

4.1 Introduction

4.2 Background

4.3 Biased Min-Consensus

4.4 Equivalence to Shortest Path Planning

4.5 Simulations and Applications

4.6 Conclusions

References

5 Discrete-Time Biased Min-Consensus

5.1 Introduction

5.2 Preliminary

5.3 Discrete-Time Biased Min-Consensus

5.4 Algorithms

5.5 Numerical Investigations

5.6 Applications

5.7 Chapter Summary

References

6 Biased Consensus Based Distributed Neural Network

6.1 Introduction

6.2 Problem Formulation

6.3 Unified Scheme

6.4 Theoretical Results

6.5 Illustrative Examples

6.6 Extension to Path Planning of Mobile Robots

6.7 Chapter Summary

References

7 Predictive Suboptimal Consensus

7.1 Introduction

7.2 Preliminary

7.3 Control Law Design

7.4 Theoretical Results

7.5 Simulation Investigation

7.6 Chapter Summary

References

8 Adaptive Near-Optimal Consensus

8.1 Introduction

8.2 Problem Formulation

8.3 Nominal Near-Optimal Design

8.4 Adaptive Near-Optimal Design

8.5 Illustrative Example

8.6 Chapter Summary

References


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия