Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

The Monge-Ampиre Equation, Gutiйrrez Cristian E.


Варианты приобретения
Цена: 23757.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Gutiйrrez Cristian E.
Название:  The Monge-Ampиre Equation
ISBN: 9783319828060
Издательство: Springer
Классификация:


ISBN-10: 3319828061
Обложка/Формат: Paperback
Страницы: 216
Вес: 0.33 кг.
Дата издания: 16.06.2018
Серия: Progress in nonlinear differential equations and their applications
Язык: English
Издание: Softcover reprint of
Иллюстрации: 3 illustrations, color; 3 illustrations, black and white; xiv, 216 p. 6 illus., 3 illus. in color.
Размер: 23.39 x 15.60 x 1.24 cm
Читательская аудитория: General (us: trade)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampere-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics.


The Monge-Amp?re Equation

Автор: Guti?rrez
Название: The Monge-Amp?re Equation
ISBN: 3319433725 ISBN-13(EAN): 9783319433721
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Now in its second edition, this monograph explores the Monge-Amp?re equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Amp?re equation and a chapter on interior H?lder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Amp?re-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics. Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.

The Monge—Amp?re Equation

Автор: Cristian E. Gutierrez
Название: The Monge—Amp?re Equation
ISBN: 1461266564 ISBN-13(EAN): 9781461266563
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The Monge-Ampere equation has attracted considerable interest in recent years because of its important role in several areas of applied mathematics.

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Amp?re Equations

Автор: Hiroyoshi Mitake; Hung V. Tran; Nam Q. Le; Hiroyos
Название: Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Amp?re Equations
ISBN: 3319542079 ISBN-13(EAN): 9783319542072
Издательство: Springer
Рейтинг:
Цена: 4890.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Preface by Nguyen Huu Du (Managing director of VIASM).-Miroyoshi Mitake and Hung V. Tran: Dynamical properties of Hamilton-Jacobi equations via the nonlinear adjoint method: Large time behavior and Discounted approximation.- Nam Q. Le: The second boundary value problem of the prescribed affine mean curvature equation and related linearized Monge-Ampиre equation.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия