Автор: Hocking Ronald R Название: Methods and Applications of Linear Models ISBN: 1118329503 ISBN-13(EAN): 9781118329504 Издательство: Wiley Рейтинг: Цена: 20109.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Praise for the Second Edition "An essential desktop reference book... it should definitely be on your bookshelf.
Название: Regression Modeling Strategies ISBN: 3319194240 ISBN-13(EAN): 9783319194240 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalised least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model.
Автор: Olive, David. Название: Linear regression / ISBN: 3319552503 ISBN-13(EAN): 9783319552507 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models.
There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models. This text is for graduates and undergraduates with a strong mathematical background. The prerequisites for this text are linear algebra and a calculus based course in statistics.
Автор: W. Kraemer; H. Sonnberger Название: The Linear Regression Model Under Test ISBN: 3642958788 ISBN-13(EAN): 9783642958786 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Similar credits are due to Adrian Pagan, Roberto Mariano and Garry Phillips, the econometrics guest professors at the Institute in the 1982 - 1984 period, who through their lectures and advice have contributed greatly to our effort.
Автор: Hoffmann John P. Название: Linear Regression Models: Applications in R ISBN: 0367753685 ISBN-13(EAN): 9780367753689 Издательство: Taylor&Francis Рейтинг: Цена: 28327.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book includes chapters on specifying the correct linear regression model, adjusting for measurement error, understanding the effects of influential observations, and using multilevel data.
Автор: Zelterman, Daniel (yale University, Connecticut) Название: Regression for health and social science ISBN: 1108478182 ISBN-13(EAN): 9781108478182 Издательство: Cambridge Academ Рейтинг: Цена: 7918.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Using every-day examples and numerous exercises, this text covers the basics of linear models with a minimum of mathematics. The emphasis is on issues involved in the analysis and the interpretation of computer output. R code is provided and explained allowing readers to apply the methods to their own data.
Автор: Frank E. Harrell , Jr. Название: Regression Modeling Strategies ISBN: 331933039X ISBN-13(EAN): 9783319330396 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalised least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model.
Автор: Per Kragh Andersen; Lene Theil Skovgaard Название: Regression with Linear Predictors ISBN: 1441971696 ISBN-13(EAN): 9781441971692 Издательство: Springer Рейтинг: Цена: 11179.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is a book about regression analysis, that is, the situation in statistics where the distribution of a response (or outcome) variable is related to - planatory variables (or covariates). This is an extremely common situation in the application of statistical methods in many ?elds, andlinear regression, - gistic regression, and Cox proportional hazards regression are frequently used for quantitative, binary, and survival time outcome variables, respectively. Several books on these topics have appeared and for that reason one may well ask why we embark on writing still another book on regression. We have two main reasons for doing this: 1. First, we want to highlightsimilaritiesamonglinear, logistic, proportional hazards, andotherregressionmodelsthatincludealinearpredictor. These modelsareoftentreatedentirelyseparatelyintextsinspiteofthefactthat alloperationsonthemodelsdealingwiththelinearpredictorareprecisely the same, including handling of categorical and quantitative covariates, testing for linearity and studying interactions. 2. Second, we want to emphasize that, for any type of outcome variable, multiple regression models are composed of simple building blocks that areaddedtogetherinthelinearpredictor: thatis, t-tests, one-wayanalyses of variance and simple linear regressions for quantitative outcomes, 2 2, 2 (k+1) tables and simple logistic regressions for binary outcomes, and 2-and (k+1)-sample logrank testsand simple Cox regressionsfor survival data. Thishastwoconsequences. Allthesesimpleandwellknownmethods can be considered as special cases of the regression models. On the other hand, the e?ect of a single explanatory variable in a multiple regression model can be interpreted in a way similar to that obtained in the simple analysis, however, now valid only for the other explanatory variables in the model "held ?xed."
Автор: Frank E. Harrell Название: Regression Modeling Strategies ISBN: 1441929185 ISBN-13(EAN): 9781441929181 Издательство: Springer Рейтинг: Цена: 12571.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: There are many books that are excellent sources of knowledge about individual stastical tools (survival models, general linear models, etc.), but the art of data analysis is about choosing and using multiple tools. In the words of Chatfield ..".students typically know the technical details of regressin for example, but not necessarily when and how to apply it. This argues the need for a better balance in the literature and in statistical teaching between techniques and problem solving strategies." Whether analyzing risk factors, adjusting for biases in observational studies, or developing predictive models, there are common problems that few regression texts address. For example, there are missing data in the majority of datasets one is likely to encounter (other than those used in textbooks ) but most regression texts do not include methods for dealing with such data effectively, and texts on missing data do not cover regression modeling.
Автор: Sanford Weisberg Название: Applied Linear Regression, 3rd Edition ISBN: 0471663794 ISBN-13(EAN): 9780471663799 Издательство: Wiley Рейтинг: Цена: 14335.00 р. Наличие на складе: Поставка под заказ.
Описание: Applied Linear Regression, Third Edition is thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, this Third Edition stresses using graphical methods to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. This text is an excellent tool f learning how to use linear regression analysis techniques to solve and gain insight into real--life problems.
Автор: Fox John Название: Applied Regression Analysis and Generalized Linear Models ISBN: 1452205663 ISBN-13(EAN): 9781452205663 Издательство: Sage Publications Рейтинг: Цена: 25027.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Providing a modern treatment of regression analysis, linear models and closely related methods, this book introduces students to one of the most useful and widely used statistical tools for social research.
Автор: Jammalamadaka S Rao, Sengupta Debasis Название: Linear Models And Regression With R: An Integrated Approach ISBN: 9811200408 ISBN-13(EAN): 9789811200403 Издательство: World Scientific Publishing Рейтинг: Цена: от 6763.00 р. Наличие на складе: Есть
Описание:
Starting with the basic linear model where the design and covariance matrices are of full rank, this book demonstrates how the same statistical ideas can be used to explore the more general linear model with rank-deficient design and/or covariance matrices. The unified treatment presented here provides a clearer understanding of the general linear model from a statistical perspective, thus avoiding the complex matrix-algebraic arguments that are often used in the rank-deficient case. Elegant geometric arguments are used as needed.
The book has a very broad coverage, from illustrative practical examples in Regression and Analysis of Variance alongside their implementation using R, to providing comprehensive theory of the general linear model with 181 worked-out examples, 227 exercises with solutions, 152 exercises without solutions (so that they may be used as assignments in a course), and 320 up-to-date references.
This completely updated and new edition of Linear Models: An Integrated Approach includes the following features:
Applications with data sets, and their implementation in R,
Comprehensive coverage of regression diagnostics and model building,
Coverage of other special topics such as collinearity, stochastic and inequality constraints, misspecified models, etc.,
Use of simple statistical ideas and interpretations to explain advanced concepts, and simpler proofs of many known results,
Discussion of models covering mixed-effects/variance components, spatial, and time series data with partially unknown dispersion matrix,
Thorough treatment of the singular linear model, including the case of multivariate response,
Insight into updates in the linear model, and their connection with diagnostics, design, variable selection, Kalman filter, etc.,
Extensive discussion of the foundations of linear inference, along with linear alternatives to least squares.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru