Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Recommender Systems for Medicine and Music, Ras Zbigniew W., Wieczorkowska Alicja, Tsumoto Shusaku


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ras Zbigniew W., Wieczorkowska Alicja, Tsumoto Shusaku
Название:  Recommender Systems for Medicine and Music
ISBN: 9783030664480
Издательство: Springer
Классификация:



ISBN-10: 3030664481
Обложка/Формат: Hardcover
Страницы: 236
Вес: 0.53 кг.
Дата издания: 09.05.2021
Язык: English
Размер: 23.39 x 15.60 x 1.60 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: Music recommendation systems are becoming more and more popular. Listening to music may improve heart rate, respiratory rate, and blood pressure in people with heart disease. The book presents a variety of approaches useful to create recommendation systems in healthcare, music, and in music therapy.


Recommender Systems for the Social Web

Автор: Jos? J. Pazos Arias; Ana Fern?ndez Vilas; Rebeca P
Название: Recommender Systems for the Social Web
ISBN: 3642446272 ISBN-13(EAN): 9783642446276
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces opportunities and challenges that arise in the recommenders` area with the advent of Web 2.0. It presents the mains aspects in the Web 2.0 hype which have to be incorporated in traditional recommender systems.

Recommender system with machine learning and artificial intelligence :

Автор: Sachi Nandan Mohanty; Jyotir Moy Chatterjee
Название: Recommender system with machine learning and artificial intelligence :
ISBN: 1119711576 ISBN-13(EAN): 9781119711575
Издательство: Wiley
Рейтинг:
Цена: 28979.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising.

This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored.

This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.

Recommender Systems for Location-based Social Networks

Автор: Panagiotis Symeonidis; Dimitrios Ntempos; Yannis M
Название: Recommender Systems for Location-based Social Networks
ISBN: 1493902857 ISBN-13(EAN): 9781493902859
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction.- Recommender Systems.- Online Social Networks.- Location-based Social Networks.- Framework.- Algorithms.- Comparison.- Real Geo-social Recommender Systems.- Conclusions.

Recommender Systems for Technology Enhanced Learning

Автор: Manouselis Nikos
Название: Recommender Systems for Technology Enhanced Learning
ISBN: 1493905295 ISBN-13(EAN): 9781493905294
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recommender Systems for Technology Enhanced Learning

Recommender Systems: Advanced Developments

Автор: Guang-quan Zhang, Jie Lu, Qian Zhang
Название: Recommender Systems: Advanced Developments
ISBN: 9811224625 ISBN-13(EAN): 9789811224621
Издательство: World Scientific Publishing
Рейтинг:
Цена: 19800.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recommender systems provide users (businesses or individuals) with personalized online recommendations of products or information, to address the problem of information overload and improve personalized services. Recent successful applications of recommender systems are providing solutions to transform online services for e-government, e-business, e-commerce, e-shopping, e-library, e-learning, e-tourism, and more.This unique compendium not only describes theoretical research but also reports on new application developments, prototypes, and real-world case studies of recommender systems. The comprehensive volume provides readers with a timely snapshot of how new recommendation methods and algorithms can overcome challenging issues. Furthermore, the monograph systematically presents three dimensions of recommender systems — basic recommender system concepts, advanced recommender system methods, and real-world recommender system applications.By providing state-of-the-art knowledge, this excellent reference text will immensely benefit researchers, managers, and professionals in business, government, and education to understand the concepts, methods, algorithms and application developments in recommender systems.

Recommender Systems: The Textbook

Автор: Aggarwal Charu C.
Название: Recommender Systems: The Textbook
ISBN: 331980619X ISBN-13(EAN): 9783319806198
Издательство: Springer
Рейтинг:
Цена: 9362.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An Introduction to Recommender Systems.- Neighborhood-Based Collaborative Filtering.- Model-Based Collaborative Filtering.- Content-Based Recommender Systems.- Knowledge-Based Recommender Systems.- Ensemble-Based and Hybrid Recommender Systems.- Evaluating Recommender Systems.- Context-Sensitive Recommender Systems.- Time- and Location-Sensitive Recommender Systems.- Structural Recommendations in Networks.- Social and Trust-Centric Recommender Systems.- Attack-Resistant Recommender Systems.- Advanced Topics in Recommender Systems.

Fashion Recommender Systems

Автор: Dokoohaki Nima
Название: Fashion Recommender Systems
ISBN: 3030552179 ISBN-13(EAN): 9783030552176
Издательство: Springer
Цена: 23757.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book is intended for periodontal residents and practicing periodontists who wish to incorporate the principles of moderate sedation into daily practice. Comprehensive airway management and rescue skills are then documented in detail so that the patient may be properly managed in the event that the sedation progresses beyond the intended level.

Big Data Recommender Systems: Algorithms, Architectures, Big Data, Security and Trust

Автор: Khalid Osman, Khan Samee U., Zomaya Albert y.
Название: Big Data Recommender Systems: Algorithms, Architectures, Big Data, Security and Trust
ISBN: 1785619756 ISBN-13(EAN): 9781785619755
Издательство: Неизвестно
Цена: 25749.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

First designed to generate personalized recommendations to users in the 90s, recommender systems apply knowledge discovery techniques to users' data to suggest information, products, and services that best match their preferences. In recent decades, we have seen an exponential increase in the volumes of data, which has introduced many new challenges.

Divided into two volumes, this comprehensive set covers recent advances, challenges, novel solutions, and applications in big data recommender systems. Volume 1 contains 14 chapters addressing foundations, algorithms and architectures, approaches for big data, and trust and security measures. Volume 2 covers a broad range of application paradigms for recommender systems over 23 chapters.

Recommender Systems

Автор: Charu C. Aggarwal
Название: Recommender Systems
ISBN: 3319296574 ISBN-13(EAN): 9783319296579
Издательство: Springer
Рейтинг:
Цена: 9362.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An Introduction to Recommender Systems.- Neighborhood-Based Collaborative Filtering.- Model-Based Collaborative Filtering.- Content-Based Recommender Systems.- Knowledge-Based Recommender Systems.- Ensemble-Based and Hybrid Recommender Systems.- Evaluating Recommender Systems.- Context-Sensitive Recommender Systems.- Time- and Location-Sensitive Recommender Systems.- Structural Recommendations in Networks.- Social and Trust-Centric Recommender Systems.- Attack-Resistant Recommender Systems.- Advanced Topics in Recommender Systems.

Recommender Systems for Information Providers

Автор: Andreas W. Neumann
Название: Recommender Systems for Information Providers
ISBN: 3790825786 ISBN-13(EAN): 9783790825787
Издательство: Springer
Рейтинг:
Цена: 20263.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Covers various aspects of recommender systems: the economic background, mechanism design, a survey of systems in the Internet, statistical methods and algorithms, service oriented architectures, user interfaces, as well as experiences and data from real-world applications.

Matrix and Tensor Factorization Techniques for Recommender Systems

Автор: Panagiotis Symeonidis; Andreas Zioupos
Название: Matrix and Tensor Factorization Techniques for Recommender Systems
ISBN: 3319413562 ISBN-13(EAN): 9783319413563
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия