Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Statistical Analysis for High-Dimensional Data: The Abel Symposium 2014, Frigessi Arnoldo, Buhlmann Peter, Glad Ingrid


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Frigessi Arnoldo, Buhlmann Peter, Glad Ingrid
Название:  Statistical Analysis for High-Dimensional Data: The Abel Symposium 2014
ISBN: 9783319800738
Издательство: Springer
Классификация:




ISBN-10: 3319800736
Обложка/Формат: Paperback
Страницы: 306
Вес: 0.45 кг.
Дата издания: 30.03.2018
Серия: Abel symposia
Язык: English
Издание: Softcover reprint of
Иллюстрации: 42 tables, color; 46 illustrations, color; 19 illustrations, black and white; xii, 306 p. 65 illus., 46 illus. in color.
Размер: 23.39 x 15.60 x 1.70 cm
Читательская аудитория: General (us: trade)
Подзаголовок: The abel symposium 2014
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

Some Themes in High-Dimensional Statistics: A. Frigessi et al.- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova et al.- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.




Statistical and econometric methods for transportation data analysis

Автор: Washington, Simon Mannering, Fred (university Of S
Название: Statistical and econometric methods for transportation data analysis
ISBN: 0367199025 ISBN-13(EAN): 9780367199029
Издательство: Taylor&Francis
Рейтинг:
Цена: 17609.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Describing tools commonly used in the field, this textbook provides an understanding of a broad range of analytical tools required to solve transportation problems. It includes a wide breadth of examples and case studies in various aspects of transportation planning, engineering, safety, and economics.

High-dimensional data analysis

Название: High-dimensional data analysis
ISBN: 981432485X ISBN-13(EAN): 9789814324854
Издательство: World Scientific Publishing
Рейтинг:
Цена: 15048.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Over the years, significant developments have been taking place in high-dimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. This book intends to examine the issues arising from high-dimensional data analysis to explore key ideas for statistical inference and prediction.

High-Dimensional Data Analysis in Cancer Research

Автор: Xiaochun Li; Ronghui Xu
Название: High-Dimensional Data Analysis in Cancer Research
ISBN: 1441924140 ISBN-13(EAN): 9781441924148
Издательство: Springer
Рейтинг:
Цена: 19589.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume presents the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data. It poses new challenges and calls for scalable solutions.

New Developments in Statistical Modeling, Inference and Application: Selected Papers from the 2014 Icsa/Kiss Joint Applied Statistics Symposium in Por

Автор: Jin Zhezhen, Liu Mengling, Luo Xiaolong
Название: New Developments in Statistical Modeling, Inference and Application: Selected Papers from the 2014 Icsa/Kiss Joint Applied Statistics Symposium in Por
ISBN: 3319826115 ISBN-13(EAN): 9783319826110
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The papers in this volume represent the most timely and advanced contributions to the 2014 Joint Applied Statistics Symposium of the International Chinese Statistical Association (ICSA) and the Korean International Statistical Society (KISS), held in Portland, Oregon.

Statistical Analysis with Missing Data, Third Edit ion

Автор: Little
Название: Statistical Analysis with Missing Data, Third Edit ion
ISBN: 0470526793 ISBN-13(EAN): 9780470526798
Издательство: Wiley
Рейтинг:
Цена: 12664.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reflecting new application topics, Statistical Analysis with Missing Data offers a thoroughly up-to-date, reorganized survey of current methodology for handling missing data problems. The third edition reviews historical approaches to the subject and describe rigorous yet simple methods for multivariate analysis with missing values.

Statistical Analysis for High-Dimensional Data

Автор: Arnoldo Frigessi; Peter B?hlmann; Ingrid Glad; Met
Название: Statistical Analysis for High-Dimensional Data
ISBN: 3319270974 ISBN-13(EAN): 9783319270975
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyv gar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Statistical Methods in Biology: Desing and Analysis of Experiments and Regression 1st Edition, S.J.Welham, S.A. Gezan, S.J. Clark, A. Mead.- Chapman and Hall/CRC; 1 edition (August 22, 2014), 608 pages, Hardover

Название: Statistical Methods in Biology: Desing and Analysis of Experiments and Regression 1st Edition, S.J.Welham, S.A. Gezan, S.J. Clark, A. Mead.- Chapman and Hall/CRC; 1 edition (August 22, 2014), 608 pages, Hardover
ISBN: 1439808783 ISBN-13(EAN): 9781439808788
Издательство: Taylor&Francis
Рейтинг:
Цена: 13779.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Written in simple language with relevant examples, Statistical Methods in Biology: Design and Analysis of Experiments and Regression is a practical and illustrative guide to the design of experiments and data analysis in the biological and agricultural sciences. The book presents statistical ideas in the context of biological and agricultural sciences to which they are being applied, drawing on relevant examples from the authors' experience.

Taking a practical and intuitive approach, the book only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat(R) statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R.

By the time you reach the end of the book (and online material) you will have gained:

  • A clear appreciation of the importance of a statistical approach to the design of your experiments,
  • A sound understanding of the statistical methods used to analyse data obtained from designed experiments and of the regression approaches used to construct simple models to describe the observed response as a function of explanatory variables,
  • Sufficient knowledge of how to use one or more statistical packages to analyse data using the approaches described, and most importantly,
  • An appreciation of how to interpret the results of these statistical analyses in the context of the biological or agricultural science within which you are working.

The book concludes with a guide to practical design and data analysis. It gives you the understanding to better interact with consultant statisticians and to identify statistical approaches to add value to your scientific research.

Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition

Автор: Nicholas J. Horton , Ken Kleinman
Название: Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition
ISBN: 1482237369 ISBN-13(EAN): 9781482237368
Издательство: Taylor&Francis
Рейтинг:
Цена: 11789.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Improve Your Analytical Skills

Incorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book's simple approach easy to understand while more sophisticated users will appreciate the invaluable source of task-oriented information.

New to the Second Edition

  • The use of RStudio, which increases the productivity of R users and helps users avoid error-prone cut-and-paste workflows
  • New chapter of case studies illustrating examples of useful data management tasks, reading complex files, making and annotating maps, "scraping" data from the web, mining text files, and generating dynamic graphics
  • New chapter on special topics that describes key features, such as processing by group, and explores important areas of statistics, including Bayesian methods, propensity scores, and bootstrapping
  • New chapter on simulation that includes examples of data generated from complex models and distributions
  • A detailed discussion of the philosophy and use of the knitr and markdown packages for R
  • New packages that extend the functionality of R and facilitate sophisticated analyses
  • Reorganized and enhanced chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots

Easily Find Your Desired Task

Conveniently organized by short, clear descriptive entries, this edition continues to show users how to easily perform an analytical task in R. Users can quickly find and implement the material they need through the extensive indexing, cross-referencing, and worked examples in the text. Datasets and code are available for download on a supplementary website.

Handbook of Statistical Analysis and Data Mining Applications, 2 ed.

Автор: Robert Nisbet , Gary Miner, Ken Yale
Название: Handbook of Statistical Analysis and Data Mining Applications, 2 ed.
ISBN: 0124166326 ISBN-13(EAN): 9780124166325
Издательство: Elsevier Science
Рейтинг:
Цена: 13304.00 р.
Наличие на складе: Поставка под заказ.

Описание:

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application.

This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas--from science and engineering, to medicine, academia and commerce.

  • Includes input by practitioners for practitioners
  • Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models
  • Contains practical advice from successful real-world implementations
  • Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions
  • Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Analysis of Multivariate and High-Dimensional Data

Автор: Koch
Название: Analysis of Multivariate and High-Dimensional Data
ISBN: 0521887933 ISBN-13(EAN): 9780521887939
Издательство: Cambridge Academ
Рейтинг:
Цена: 10613.00 р.
Наличие на складе: Поставка под заказ.

Описание: `Big data` poses challenges that require both classical multivariate methods and modern machine-learning techniques. This coherent treatment integrates theory with data analysis, visualisation and interpretation of the analysis. Problems, data sets and MATLAB (R) code complete the package. It is suitable for master`s/graduate students in statistics and working scientists in data-rich disciplines.

High-dimensional Microarray Data Analysis

Автор: Shuichi Shinmura
Название: High-dimensional Microarray Data Analysis
ISBN: 9811359970 ISBN-13(EAN): 9789811359972
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks.Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel.Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия