Optoelectronics in Machine Vision-Based Theories and Applications, Rivas-Lopez Moises, Sergiyenko Oleg, Flores-Fuentes Wendy
Автор: Moises Rivas-Lopez, Oleg Sergiyenko, Wendy Flores-Fuentes, Julio Cesar Rodriguez-Quinonez Название: Optoelectronics in Machine Vision-Based Theories and Applications ISBN: 1522557512 ISBN-13(EAN): 9781522557517 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 28215.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Sensor technologies play a large part in modern life, as they are present in things like security systems, digital cameras, smartphones, and motion sensors. While these devices are always evolving, research is being done to further develop this technology to help detect and analyze threats, perform in-depth inspections, and perform tracking services.Optoelectronics in Machine Vision-Based Theories and Applications provides innovative insights on theories and applications of optoelectronics in machine vision-based systems. It also covers topics such as applications of unmanned aerial vehicle, autonomous and mobile robots, medical scanning, industrial applications, agriculture, and structural health monitoring. This publication is a vital reference source for engineers, technology developers, academicians, researchers, and advanced-level students seeking emerging research on sensor technologies and machine vision.
Описание: In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries.
Описание: This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.
This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.
Описание: You will learn the principles of computer vision and deep learning, and understand various models and architectures with their pros and cons. You will learn how to use TensorFlow 2.x to build your own neural network model and apply it to various computer vision tasks such as image acquiring, processing, and analyzing.
Описание: Chapter 1: Introduction to Deep Learning-based Technological Applications.- Chapter 2: Vision to Language: Methods, Metrics and Datasets.- Chapter 3: Deep Learning Techniques for Geospatial Data Analysis.- Chapter 4: Deep Learning Approaches in Food Recognition.- Chapter 5: Deep Learning for Twitter Sentiment Analysis: the Effect of pre-trained Word Embedding.- Chapter 6: A Good Defense is a Strong DNN: Defending the IoT with Deep Neural Networks.- Chapter 7: Survey on Deep Learning Techniques for Medical Imaging Application Area.- Chapter 8: Deep Learning Methods in Electroencephalography.
Описание: This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly.
Описание: This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.
Описание: Highlights the marriage between business intelligence and knowledge management through the use of agile methodologies. Through its fifteen chapters, this offers perspectives on the integration between process modeling, agile methodologies, business intelligence, knowledge management, and strategic management.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru