Описание: The Deep Learning with Keras Workshop outlines a simple and straightforward way for you to understand deep learning with Keras. Starting with basic concepts such as data preprocessing, this book equips you with all the tools and techniques required for training your neural networks to solve various modeling problems.
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
DO YOU WANT TO LEARN THE BASICS OF PYTHON PROGRAMMING QUICKLY?
Imagine a world where you can make a computer program learn for itself? What if it could recognize who is in a picture or the exact websites that you want to look for when you type it into the program? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin?
This is actually all possible. The programs that were mentioned before are all a part of machine learning. This is a breakthrough in the world of information technology, which allows the computer to learn how to behave, rather than asking the programmer to think of every single instance that may show up with their user ahead of time. it is taking over the world, and you may be using it now, without even realizing it.
Some of the topics that we will discuss include:
The Fundamentals of Machine Learning, Deep learning, And Neural Networks
How To Set Up Your Environment And Make Sure That Python, TensorFlow And Scikit-Learn Work Well For You
How To Master Neural Network Implementation Using Different Libraries
How Random Forest Algorithms Are Able To Help Out With Machine Learning
How To Uncover Hidden Patterns And Structures With Clustering
How Recurrent Neural Networks Work And When To Use
The Importance Of Linear Classifiers And Why They Need To Be Used In Machine Learning
And Much More
This guidebook is going to provide you with the information you need to get started with Python Machine Learning. If you have an idea for a great program, but you don't have the technical knowledge to make it happen, then this guidebook will help you get started. Machine learning has the capabilities, and Python has the ease, to help you, even as a beginner, create any product that you would like.
If you have a program in mind, or you just want to be able to get some programming knowledge and learn more about the power that comes behind it, then this is the guidebook for you.
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Описание: This book provides the intuition behind the state of the art Deep Learning architectures such as ResNet, DenseNet, Inception, and encoder-decoder without diving deep into the math of it. It shows how you can implement and use various architectures to solve problems in the area of image classification, language translation and NLP using PyTorch.
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Описание: Equipped with the latest updates, this third edition of Python Machine Learning By Example provides a comprehensive course for ML enthusiasts to strengthen their command of ML concepts, techniques, and algorithms.
Описание: Starting from the basics of neural networks, this book covers over 50 applications of computer vision and helps you to gain a solid understanding of the theory of various architectures before implementing them. Each use case is accompanied by a notebook in GitHub with ready-to-execute code and self-assessment questions.
Get a head start in the world of AI and deep learning by developing your skills with PyTorch
Key Features
Learn how to define your own network architecture in deep learning
Implement helpful methods to create and train a model using PyTorch syntax
Discover how intelligent applications using features like image recognition and speech recognition really process your data
Book Description
Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you're starting from scratch.
It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures.
The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues.
By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps.
What you will learn
Explore the different applications of deep learning
Understand the PyTorch approach to building neural networks
Create and train your very own perceptron using PyTorch
Solve regression problems using artificial neural networks (ANNs)
Handle computer vision problems with convolutional neural networks (CNNs)
Perform language translation tasks using recurrent neural networks (RNNs)
Who this book is for
This deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.
Автор: Mitchell Laura, K Sri Yogesh, Subramanian Vishnu Название: Deep Learning with PyTorch 1.x - Second Edition ISBN: 1838553002 ISBN-13(EAN): 9781838553005 Издательство: Неизвестно Рейтинг: Цена: 5516.00 р. Наличие на складе: Нет в наличии.
Описание: With practical examples, this book teaches you how to effectively implement deep learning techniques to build neural network architectures. This book will be useful for anyone who wants to implement deep learning concepts using the latest version of PyTorch
Автор: Liu Yuxi (Hayden) Название: PyTorch 1.0 Reinforcement Learning Cookbook ISBN: 1838551964 ISBN-13(EAN): 9781838551964 Издательство: Неизвестно Рейтинг: Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents practical solutions to the most common reinforcement learning problems. The recipes in this book will help you understand the fundamental concepts to develop popular RL algorithms. You will gain practical experience in the RL domain using the modern offerings of the PyTorch 1.x library.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru