Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Unsupervised Learning in Space and Time: A Modern Approach for Computer Vision Using Graph-Based Techniques and Deep Neural Networks, Leordeanu Marius


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Leordeanu Marius
Название:  Unsupervised Learning in Space and Time: A Modern Approach for Computer Vision Using Graph-Based Techniques and Deep Neural Networks
ISBN: 9783030421304
Издательство: Springer
Классификация:



ISBN-10: 3030421309
Обложка/Формат: Paperback
Страницы: 298
Вес: 0.45 кг.
Дата издания: 18.04.2021
Язык: English
Размер: 23.39 x 15.60 x 1.73 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание:

This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field.

Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts.

Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way.

Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.





Mastering Computer Vision with TensorFlow 2.x: Build advanced computer vision applications using machine learning and deep learning techniques

Автор: Kar Krishnendu
Название: Mastering Computer Vision with TensorFlow 2.x: Build advanced computer vision applications using machine learning and deep learning techniques
ISBN: 1838827064 ISBN-13(EAN): 9781838827069
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: You will learn the principles of computer vision and deep learning, and understand various models and architectures with their pros and cons. You will learn how to use TensorFlow 2.x to build your own neural network model and apply it to various computer vision tasks such as image acquiring, processing, and analyzing.

Handbook of Research on Applications and Implementations of Machine Learning Techniques

Автор: Sathiyamoorthi Velayutham
Название: Handbook of Research on Applications and Implementations of Machine Learning Techniques
ISBN: 1522599029 ISBN-13(EAN): 9781522599029
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 39640.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Artificial intelligence is at the forefront of research and implementation in many industries including healthcare and agriculture. Whether it's detecting disease or generating algorithms, deep learning techniques are advancing exponentially. Researchers and professionals need a platform in which they can keep up with machine learning trends and their developments in the real world.

The Handbook of Research on Applications and Implementations of Machine Learning Techniques provides innovative insights into the multi-disciplinary applications of machine learning algorithms for data analytics. The content within this publication examines disease identification, neural networks, and language support. It is designed for IT professionals, developers, data analysts, technology specialists, R&D professionals, industrialists, practitioners, researchers, academicians, and students seeking research on deep learning procedures and their enactments in the fields of medicine, engineering, and computer science.

Real-Time Iot Imaging with Deep Neural Networks: Using Java on the Raspberry Pi 4

Автор: Modrzyk Nicolas
Название: Real-Time Iot Imaging with Deep Neural Networks: Using Java on the Raspberry Pi 4
ISBN: 1484257219 ISBN-13(EAN): 9781484257210
Издательство: Springer
Рейтинг:
Цена: 4890.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Intermediate user level

Evolutionary approach to machine learning and deep neural networks.

Название: Evolutionary approach to machine learning and deep neural networks.
ISBN: 9811301999 ISBN-13(EAN): 9789811301995
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gr?bner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

Unsupervised Learning in Space and Time

Автор: Marius Leordeanu
Название: Unsupervised Learning in Space and Time
ISBN: 3030421279 ISBN-13(EAN): 9783030421274
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video.

The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts. Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way.

Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.

Applied Deep Learning and Computer Vision for Self-Driving Cars: Build autonomous vehicles using deep neural networks and behavior-cloning techniques

Автор: Ranjan Sumit, Senthamilarasu S.
Название: Applied Deep Learning and Computer Vision for Self-Driving Cars: Build autonomous vehicles using deep neural networks and behavior-cloning techniques
ISBN: 1838646302 ISBN-13(EAN): 9781838646301
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book teaches you the different techniques and methodologies associated while implementing deep learning solutions in self-driving cars. You will use real-world examples to implement various neural network architectures to develop your own autonomous and automated vehicle using the Python environment.

Deep Learning and Convolutional Neural Networks for Medical Image Computing

Автор: Le Lu; Yefeng Zheng; Gustavo Carneiro; Lin Yang
Название: Deep Learning and Convolutional Neural Networks for Medical Image Computing
ISBN: 3319827138 ISBN-13(EAN): 9783319827131
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Deep Learning For Eeg-based Brain-computer Interfaces: Representations, Algorithms And Applications

Автор: Lina Yao, Xiang Zhang
Название: Deep Learning For Eeg-based Brain-computer Interfaces: Representations, Algorithms And Applications
ISBN: 1786349582 ISBN-13(EAN): 9781786349583
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14256.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Deep Learning for EEG-based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI).

Data-Driven Computational Neuroscience: Machine Learning and Statistical Models

Автор: Concha Bielza, Pedro Larranaga
Название: Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
ISBN: 110849370X ISBN-13(EAN): 9781108493703
Издательство: Cambridge Academ
Рейтинг:
Цена: 12830.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This modern treatment of real world cases offers neuroscience researchers and graduate students a comprehensive, in-depth guide to statistical and machine learning methods.

Deep learning on graphs

Автор: Ma, Yao (michigan State University) Tang, Jiliang (michigan State University)
Название: Deep learning on graphs
ISBN: 1108831745 ISBN-13(EAN): 9781108831741
Издательство: Cambridge Academ
Рейтинг:
Цена: 7126.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This comprehensive text on the theory and techniques of graph neural networks takes students, practitioners, and researchers from the basics to the state of the art. It systematically introduces foundational topics such as filtering pooling, robustness, and scalability and then demonstrates applications in NLP, data mining, vision and healthcare.

Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras

Автор: Verdhan Vaibhav
Название: Computer Vision Using Deep Learning: Neural Network Architectures with Python and Keras
ISBN: 1484266153 ISBN-13(EAN): 9781484266151
Издательство: Springer
Цена: 4890.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chapter 1 Introduction to Computer Vision and Deep Learning.- Chapter 2 Nuts and Bolts of Deep Learning for Computer Vision.- Chapter 3 Image Classification using LeNet.- Chapter 4 VGGNet and AlexNext Networks.- Chapter 5 Object Detection Using Deep Learning.- Chapter 6 Facial Recognition and Gesture Recognition.- Chapter 7 Video Analytics Using Deep Learning.- Chapter 8 End-to-end Model Development.- Appendix.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия