Описание: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.
Автор: Ohta, Jun Название: Smart CMOS Image Sensors and Applications, Second Edition ISBN: 1498764649 ISBN-13(EAN): 9781498764643 Издательство: Taylor&Francis Рейтинг: Цена: 19906.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides the state-of-the-art of CMOS image sensors and applications. The book describes the fundamentals of CMOS image sensors, optoelectronic device physics, and introduces typical CMOS image sensor structures, such as an active pixel sensor (APS).
Описание: Over the past decade, many researchers have proposed applications of fuzzy transform techniques for various image processing topics, such as image coding/decoding, image reduction, image segmentation, image watermarking and image fusion;
"This book is suitable as a textbook for an introductory undergraduate mathematics course on discrete Fourier and wavelet transforms for students with background in calculus and linear algebra. The particular strength of this book is its accessibility to students with no background in analysis. The exercises and computer explorations provide the reader with many opportunities for active learning. Studying from this text will also help students strengthen their background in linear algebra."
Mathematical Association of America
This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.
It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.
"This book is suitable as a textbook for an introductory undergraduate mathematics course on discrete Fourier and wavelet transforms for students with background in calculus and linear algebra. The particular strength of this book is its accessibility to students with no background in analysis. The exercises and computer explorations provide the reader with many opportunities for active learning. Studying from this text will also help students strengthen their background in linear algebra."
Mathematical Association of America
This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.
It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.
Описание: This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient.
Автор: Salazar Niceto Название: Concepts and Applications of Image Processing Techniques ISBN: 1632401150 ISBN-13(EAN): 9781632401151 Издательство: Неизвестно Цена: 15280.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Advancements in data science have created opportunities to sort, manage, and analyze large amounts of data more effectively and efficiently. Applying these new technologies to the healthcare industry, which has vast quantities of patient and medical data and is increasingly becoming more data-reliant, is crucial for refining medical practices and patient care.
Data Analytics in Medicine: Concepts, Methodologies, Tools, and Applications is a vital reference source that examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations. Highlighting a range of topics such as data security and privacy, health informatics, and predictive analytics, this multi-volume book is ideally designed for doctors, hospital administrators, nurses, medical professionals, IT specialists, computer engineers, information technologists, biomedical engineers, data-processing specialists, healthcare practitioners, academicians, and researchers interested in current research on the connections between data analytics in the field of medicine.
Описание: Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining presents novel algorithms for academic search, recommendation and association rule mining that have been developed and optimized for different commercial as well as academic purpose systems. Along with the design and implementation of algorithms, a major part of the work presented in the book involves the development of new systems both for commercial as well as for academic use. In the first part of the book the author introduces a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. In order to evaluate the performance of the introduced algorithms, a meta-search engine has been designed and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme. In the second part of the book the design of novel recommendation algorithms with application in different types of e-commerce systems are described. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. The initial version of the system uses a novel hybrid recommender (user, item and content based) and provides daily recommendations to all active subscribers of the provider (currently more than 30,000). The recommenders that we are presenting are hybrid by nature, using an ensemble configuration of different content, user as well as item-based recommenders in order to provide more accurate recommendation results.The final part of the book presents the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form that antecedent implies consequent consisting of a set of numerical or quantitative attributes. The introduced mining algorithm processes a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. The generated rules show strong relationships that exist between the consequent and the antecedent of each rule, representing different items that have been consumed at specific price levels. This research book will be of appeal to researchers, graduate students, professionals, engineers and computer programmers.
Автор: Johnson I. Agbinya Название: Applied Data Analytics - Principles and Applications ISBN: 8770220964 ISBN-13(EAN): 9788770220965 Издательство: Taylor&Francis Рейтинг: Цена: 14851.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The emergence of huge amounts of data which require analysis and in some cases real-time processing has forced exploration into fast algorithms for handling very lage data sizes. Analysis of x-ray images in medical applications, cyber security data, crime data, telecommunications and stock market data, health records and business analytics data are but a few areas of interest. Applications and platforms including R, RapidMiner and Weka provide the basis for analysis, often used by practitioners who pay little to no attention to the underlying mathematics and processes impacting the data. This often leads to an inability to explain results or correct mistakes, or to spot errors.
Applied Data Analytics - Principles and Applications seeks to bridge this missing gap by providing some of the most sought after techniques in big data analytics. Establishing strong foundations in these topics provides practical ease when big data analyses are undertaken using the widely available open source and commercially orientated computation platforms, languages and visualisation systems. The book, when combined with such platforms, provides a complete set of tools required to handle big data and can lead to fast implementations and applications.
The book contains a mixture of machine learning foundations, deep learning, artificial intelligence, statistics and evolutionary learning mathematics written from the usage point of view with rich explanations on what the concepts mean. The author has thus avoided the complexities often associated with these concepts when found in research papers. The tutorial nature of the book and the applications provided are some of the reasons why the book is suitable for undergraduate, postgraduate and big data analytics enthusiasts.
This text should ease the fear of mathematics often associated with practical data analytics and support rapid applications in artificial intelligence, environmental sensor data modelling and analysis, health informatics, business data analytics, data from Internet of Things and deep learning applications.
Описание: This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.
Описание: Craig Larman again delivers a clear path for students to learn object-oriented analysis and design through his clear and precise writing style. Larman teaches newcomers to OOA/D learn how to "think in objects" by presenting three iterations of a single, cohesive case study, incrementally introducing the requirements and OOA/D activities, principles, and patterns that are most critical to success.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru