Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Constraint Handling in Metaheuristics and Applications, Kulkarni Anand J., Mezura-Montes Efrйn, Wang Yong


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kulkarni Anand J., Mezura-Montes Efrйn, Wang Yong
Название:  Constraint Handling in Metaheuristics and Applications
ISBN: 9789813367098
Издательство: Springer
Классификация:

ISBN-10: 9813367091
Обложка/Формат: Hardcover
Страницы: 315
Вес: 0.73 кг.
Дата издания: 13.04.2021
Язык: English
Размер: 23.88 x 19.81 x 2.03 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: This book aims to discuss the core and underlying principles and analysis of the different constraint handling approaches. The main emphasis of the book is on providing an enriched literature on mathematical modelling of the test as well as real-world problems with constraints, and further development of generalized constraint handling techniques.


Recent Advances in Hybrid Metaheuristics for Data Clustering

Автор: de Sourav, Dey Sandip, Bhattacharyya Siddhartha
Название: Recent Advances in Hybrid Metaheuristics for Data Clustering
ISBN: 1119551595 ISBN-13(EAN): 9781119551591
Издательство: Wiley
Рейтинг:
Цена: 16624.00 р.
Наличие на складе: Поставка под заказ.

Описание:

An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques

Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors--noted experts on the topic--provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering.

The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text:

  • Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts
  • Offers an in-depth analysis of a range of optimization algorithms
  • Highlights a review of data clustering
  • Contains a detailed overview of different standard metaheuristics in current use
  • Presents a step-by-step guide to the build-up of hybrid metaheuristics
  • Offers real-life case studies and applications

Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.

Optimization using evolutionary algorithms and metaheuristics

Автор: Kaushik Kumar and J. Paulo Davim
Название: Optimization using evolutionary algorithms and metaheuristics
ISBN: 0367260441 ISBN-13(EAN): 9780367260446
Издательство: Taylor&Francis
Рейтинг:
Цена: 25265.00 р.
Наличие на складе: Нет в наличии.

Описание: This book covers developments and advances of algorithm based optimization techniques These techniques were only used for non-engineering problems. This book applies them to engineering problems.

Handbook of Approximation Algorithms and Metaheuristics

Название: Handbook of Approximation Algorithms and Metaheuristics
ISBN: 1498770150 ISBN-13(EAN): 9781498770156
Издательство: Taylor&Francis
Рейтинг:
Цена: 65076.00 р.
Наличие на складе: Нет в наличии.

Описание: This handbook reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics.

Advances in Metaheuristics Algorithms: Methods and Applications

Автор: Cuevas
Название: Advances in Metaheuristics Algorithms: Methods and Applications
ISBN: 3319893084 ISBN-13(EAN): 9783319893082
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explores new alternative metaheuristic developments that have proved to be effective in their application to several complex problems.

Robust Control Optimization with Metaheuristics

Автор: Feyel
Название: Robust Control Optimization with Metaheuristics
ISBN: 1786300427 ISBN-13(EAN): 9781786300423
Издательство: Wiley
Рейтинг:
Цена: 22010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In the automotive industry, a Control Engineer must design a unique control law that is then tested and validated on a single prototype with a level of reliability high enough to to meet a number of complex specifications on various systems.

Machine Learning and Metaheuristics Algorithms, and Applications: Second Symposium, Somma 2020, Chennai, India, October 14-17, 2020, Revised Selected

Автор: Thampi Sabu M., Piramuthu Selwyn, Li Kuan-Ching
Название: Machine Learning and Metaheuristics Algorithms, and Applications: Second Symposium, Somma 2020, Chennai, India, October 14-17, 2020, Revised Selected
ISBN: 9811604185 ISBN-13(EAN): 9789811604188
Издательство: Springer
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the Second Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2020, held in Chennai, India, in October 2020. The 12 full papers and 7 short papers presented in this volume were thoroughly reviewed and selected from 40 qualified submissions.

Applications of Metaheuristics in Process Engineering

Автор: Jayaraman Valadi; Patrick Siarry
Название: Applications of Metaheuristics in Process Engineering
ISBN: 3319357042 ISBN-13(EAN): 9783319357041
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Metaheuristics exhibit desirable properties like simplicity, easy parallelizability and ready applicability to different types of optimization problems such as real parameter optimization, combinatorial optimization and mixed integer optimization.

Metaheuristics in Machine Learning: Theory and Applications

Автор: Oliva Diego, Houssein Essam H., Hinojosa Salvador
Название: Metaheuristics in Machine Learning: Theory and Applications
ISBN: 3030705412 ISBN-13(EAN): 9783030705411
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning.

Advances in Metaheuristics Algorithms: Methods and Applications

Автор: Erik Cuevas; Daniel Zald?var; Marco P?rez-Cisneros
Название: Advances in Metaheuristics Algorithms: Methods and Applications
ISBN: 3030077365 ISBN-13(EAN): 9783030077365
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Поставка под заказ.

Описание:

This book explores new alternative metaheuristic developments that have proved to be effective in their application to several complex problems. Though most of the new metaheuristic algorithms considered offer promising results, they are nevertheless still in their infancy. To grow and attain their full potential, new metaheuristic methods must be applied in a great variety of problems and contexts, so that they not only perform well in their reported sets of optimization problems, but also in new complex formulations. The only way to accomplish this is to disseminate these methods in various technical areas as optimization tools. In general, once a scientist, engineer or practitioner recognizes a problem as a particular instance of a more generic class, he/she can select one of several metaheuristic algorithms that guarantee an expected optimization performance. Unfortunately, the set of options are concentrated on algorithms whose popularity and high proliferation outstrip those of the new developments. This structure is important, because the authors recognize this methodology as the best way to help researchers, lecturers, engineers and practitioners solve their own optimization problems.
Machine Learning and Metaheuristics Algorithms, and Applications: First Symposium, Somma 2019, Trivandrum, India, December 18-21, 2019, Revised Select

Автор: Thampi Sabu M., Trajkovic Ljiljana, Li Kuan-Ching
Название: Machine Learning and Metaheuristics Algorithms, and Applications: First Symposium, Somma 2019, Trivandrum, India, December 18-21, 2019, Revised Select
ISBN: 9811543003 ISBN-13(EAN): 9789811543005
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the First Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, held in Trivandrum, India, in December 2019. The 17 full papers and 6 short papers presented in this volume were thoroughly reviewed and selected from 53 qualified submissions.

Hybrid Metaheuristics: Research and Applications

Автор: Bhattacharyya Siddhartha
Название: Hybrid Metaheuristics: Research and Applications
ISBN: 9813270225 ISBN-13(EAN): 9789813270220
Издательство: World Scientific Publishing
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A metaheuristic is a higher-level procedure designed to select a partial search algorithm that may lead to a good solution to an optimization problem, especially with incomplete or imperfect information.

This unique compendium focuses on the insights of hybrid metaheuristics. It illustrates the recent researches on evolving novel hybrid metaheuristic algorithms, and prominently highlights its diverse application areas. As such, the book helps readers to grasp the essentials of hybrid metaheuristics and to address real world problems.

The must-have volume serves as an inspiring read for professionals, researchers, academics and graduate students in the fields of artificial intelligence, robotics and machine learning.

Metaheuristics for Scheduling in Industrial and Manufacturing Applications

Автор: Fatos Xhafa; Ajith Abraham
Название: Metaheuristics for Scheduling in Industrial and Manufacturing Applications
ISBN: 3642097782 ISBN-13(EAN): 9783642097782
Издательство: Springer
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: During the past decades scheduling has been among the most studied op- mization problemsanditisstillanactiveareaofresearch Schedulingappears in many areas of science, engineering and industry and takes di?erent forms depending on the restrictions and optimization criteria of the operating en- ronments 8]. For instance, in optimization and computer science, scheduling has been de?ned as "the allocation of tasks to resources over time in order to achieve optimality in one or more objective criteria in an e?cient way" and in production as "production schedule, i. e., the planning of the production or the sequence of operations according to which jobs pass through machines and is optimal with respect to certain optimization criteria. " Although there is a standardized form of stating any scheduling problem, namely "e?cient allocation ofn jobs onm machines -which can process no more than one activity at a time- with the objective to optimize some - jective function of the job completion times", scheduling is in fact a family of problems. Indeed, several parameters intervene in the problem de?nition: (a) job characteristics (preemptive or not, precedence constraints, release dates, etc. ); (b) resource environment (single vs. parallel machines, un- lated machines, identical or uniform machines, etc. ); (c) optimization criteria (minimize total tardiness, the number of late jobs, makespan, ?owtime, etc.; maximize resource utilization, etc. ); and, (d) scheduling environment (static vs. dynamic, intheformerthenumberofjobstobeconsideredandtheirready times are available while in the later the number of jobs and their charact- istics change over time).


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия