Counterexamples in measure and integration, Schilling, Rene L. (technische Universitat, Dresden) Kuhn, Franziska (technische Universitat, Dresden)
Автор: Ren? L. Schilling , Franziska K?hn Название: Counterexamples in Measure and Integration ISBN: 1316519139 ISBN-13(EAN): 9781316519134 Издательство: Cambridge Academ Рейтинг: Цена: 17424.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is a perfect companion to any course on measure theory, integration, real and functional analysis, providing more than 300 examples and counterexamples to the otherwise often rather theoretical courses. By knowing `what may go wrong` students will gain a better understanding of the standard course material.
Автор: Charalambous Michael G. Название: Dimension Theory: A Selection of Theorems and Counterexamples ISBN: 3030222349 ISBN-13(EAN): 9783030222345 Издательство: Springer Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: - Topological Spaces. - The Three Main Dimension Functions. - The Countable Sum Theorem for Covering Dimension. - Urysohn Inequalities. - The Dimension of Euclidean Spaces. - Connected Components and Dimension. - Factorization and Compactification Theorems for Separable Metric Spaces. - Coincidence, Product and Decomposition Theorems for Separable Metric Spaces. - Universal Spaces for Separable Metric Spaces of Dimension at Most n. - Axiomatic Characterization of the Dimension of Separable Metric Spaces. - Cozero Sets and Covering Dimension dim0. - ψ-Spaces and the Failure of the Sum and Subset Theorems for dim0. - The Inductive Dimension Ind0. - Two Classical Examples. - The Gap Between the Covering and the Inductive Dimensions of Compact Hausdorff Spaces. - Inverse Limits and N-Compact Spaces. - Some Standard Results Concerning Metric Spaces. - The Mardesi c Factorization Theorem and the Dimension of Metrizable Spaces. - A Metrizable Space with Unequal Inductive Dimensions. - No Finite Sum Theorem for the Small Inductive Dimension of Metrizable Spaces. - Failure of the Subset Theorem for Hereditarily Normal Spaces. - A Zero-Dimensional, Hereditarily Normal and Lindelцf Space Containing Subspaces of Arbitrarily Large Dimension. - Cosmic Spaces and Dimension. - n-Cardinality and Bernstein Sets. - The van Douwen Technique for Constructing Counterexamples. - No Compactification Theorem for the Small Inductive Dimension of Perfectly Normal Spaces. - Normal Products and Dimension. - Fully Closed and Ring-Like Maps. - Fedorčuk's Resolutions. - Compact Spaces Without Intermediate Dimensions. - More Continua with Distinct Covering and Inductive Dimensions. - The Gaps Between the Dimensions of Normal Hausdorff Spaces.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru