Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Transfer learning through embedding spaces, Rostami, Mohammad


Варианты приобретения
Цена: 17609.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Rostami, Mohammad
Название:  Transfer learning through embedding spaces
ISBN: 9780367699055
Издательство: Taylor&Francis
Классификация:



ISBN-10: 0367699052
Обложка/Формат: Hardcover
Страницы: 198
Вес: 0.59 кг.
Дата издания: 29.06.2021
Язык: English
Иллюстрации: 10 tables, black and white; 40 line drawings, black and white; 40 illustrations, black and white
Размер: 25.40 x 17.81 x 1.42 cm
Читательская аудитория: Tertiary education (us: college)
Рейтинг:
Поставляется из: Европейский союз
Описание: Transfer Learning through Embedding Spaces provides a brief background on transfer learning and then focus on the idea of transferring knowledge through intermediate embedding spaces. The idea is to couple and relate different learning through embedding spaces that encode task-level relations and similarities.


Graph Embedding for Pattern Analysis

Автор: Yun Fu; Yunqian Ma
Название: Graph Embedding for Pattern Analysis
ISBN: 1489990623 ISBN-13(EAN): 9781489990624
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph and graph in vector spaces, and describes their real-world applications.

Innovation through Knowledge Transfer

Автор: Robert J. Howlett
Название: Innovation through Knowledge Transfer
ISBN: 3642264107 ISBN-13(EAN): 9783642264108
Издательство: Springer
Рейтинг:
Цена: 47377.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes International Conference on `Innovation through Knowledge Transfer: Research with Impact`, InnovationKT`09, held in Kingston, London, UK, provided a rare and welcome opportunity to share some of the successes of knowledge transfer.

Network Embedding: Theories, Methods, and Applications

Автор: Yang Cheng, Liu Zhiyuan, Tu Cunchao
Название: Network Embedding: Theories, Methods, and Applications
ISBN: 1636390463 ISBN-13(EAN): 9781636390468
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 15939.00 р.
Наличие на складе: Нет в наличии.

Описание:

Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.

This book provides a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL). The book starts with an introduction to the background and rising of network embeddings as a general overview for readers. Then it introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.

Kernel mean embedding of distributions:

Автор: Muandet, Krikamol Fukumizu, Kenji Sriperumbudur, Bharath Scholkopf, Bernhard
Название: Kernel mean embedding of distributions:
ISBN: 1680832883 ISBN-13(EAN): 9781680832884
Издательство: Неизвестно
Рейтинг:
Цена: 13656.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics who are interested in the theory and applications of kernel mean embeddings.

Extending and Embedding Python: Release 3.6.4

Автор: Van Rossum Guido, Python Development Team
Название: Extending and Embedding Python: Release 3.6.4
ISBN: 1680921649 ISBN-13(EAN): 9781680921649
Издательство: Неизвестно
Рейтинг:
Цена: 2150.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs

Автор: Aggarwal Manasvi, Murty M. N.
Название: Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs
ISBN: 9813340215 ISBN-13(EAN): 9789813340213
Издательство: Springer
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Introduction

1.1 introduction

1.2 Notations used in Book

1.3 Contents covered in this book

2 Representations of Networks

2.1 Introduction

2.2 Networks Represented as Graphs

2.3 Data Structures to Represent Graphs

2.3.1 Matrix Representation

2.3.2 Adjacency List

2.4 Network Embeddings

2.5 Evaluation Datasets

2.5.1 Evaluation Datasets

2.5.2 Evaluation Metrics

2.6 Machine Learning Downstream Tasks

2.6.1 Classification

2.6.2 Clustering

2.6.3 Link Prediction (LP)

2.6.4 Visualization

2.6.5 Network Reconstruction

2.7 Embeddings based on Matrix Factorization

2.7.1 Singular Value Decomposition (SVD)

2.7.2 Matrix Factorization based Clustering

2.7.3 Soft Clustering as Matrix Factorization

2.7.4 Non-negative Matrix factorization (NMF)

2.8 Word2vec

2.8.1 Skipgram model

2.9 Learning Network Embeddings

2.9.1 Supervised Learning

2.9.2 Unsupervised Learning

2.9.3 Node and Edge Embeddings

2.9.4 Graph Embedding

2.10 Summary

3 Deep Learning

3.1 Introduction

3.2 Neural Networks

3.2.1 Perceptron

3.2.2 Characteristics of Neural Networks

3.2.3 Multilayer Perceptron Networks

3.2.4 Training MLP Networks

3.3 Convolution Neural Networks

3.3.1 Activation Function

3.3.2 Initialization of Weights

3.3.3 Deep Feedforward Neural Network

3.4 Recurrent Networks

3.4.1 Recurrent Neural Networks

3.4.2 Long Short Term Memory

3.4.3 Different Gates used by LSTM

3.4.4 Training of LSTM Models

3.5 Learning Representations using Autoencoders

3.5.1 Types of Autoencoders

3.6 Summary

References

4 Embedding Nodes and Edge

4.1 Introduction

4.2 Representation of Node and Edges as Vectors

4.3 Embeddings based on Random Walks

4.4 Embeddings based on Matrix Factorization

4.5 Graph Neural Network Models

4.6 State of the art algorithms

4.7 Evaluation methods and Machine Learning tasks

4.8 Summary

References

5 Embedding Graphs

5.1 Introduction

5.2 Representation of Graphs as Vectors

5.3 Graph Representation using Node Embeddings

5.4 Graph Pooling Techniques

5.4.1 Global Pooling Methods

5.4.2 Hierarchical Pooling Methods

5.5 State of the art algorithms

5.6 Evaluation methods and Machine Learning tasks

5.7 Summary

References
Network Embedding: Theories, Methods, and Applications

Автор: Yang Cheng, Liu Zhiyuan, Tu Cunchao
Название: Network Embedding: Theories, Methods, and Applications
ISBN: 1636390447 ISBN-13(EAN): 9781636390444
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12751.00 р.
Наличие на складе: Нет в наличии.

Описание:

Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.

This book provides a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL). The book starts with an introduction to the background and rising of network embeddings as a general overview for readers. Then it introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия