Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Do you want to learn how to write your own codes and programming and get your computer set up to learn just like humans do? Do you want to learn how to write out codes in deep learning-without having to spend years going to school to learn to code and how all this works? Do you know a bit of Python coding and want to learn more about how this deep learning works?
This guidebook is the tool that you need to not only learn how to do machine learning but also learn how to take this even further and write some of your own codes in deep learning. The field of deep learning is pretty new, and many programmers have not been able to delve into the depths of what we can see with this type of programming-but with the growing market for products and technology that can act and learn just like the human brain, this field is definitely taking off
This book will take some time to explore the different Python libraries that will help you to do some deep learning algorithms in no time. Investing your time in the Python language and learning the different libraries that are needed to turn this basic programming language into a deep learning machine can be one of the best decisions for you.
By learning some of the tips in this book, you will be able to save time and resources when it comes to your deep learning needs. Rather than spending time with other, more difficult programming languages, or having to go take complicated classes to learn how to do these algorithms, we will explore exactly how to do all of the tasks that you need with this type of machine learning.
You will learn:
1. What deep learning is, how it is different from machine learning, and why Python is such a beneficial language to use with the deep learning algorithms;
2. The basics of the three main Python languages that will help you get the work done-including TensorFlow, Keras, and PyTorch;
3. How to install the three Python libraries to help you get started;
4. A closer look at neural networks, what they are, why they are important, and some of the mathematics of making them work;
5. The basics you need to know about TensorFlow and some of the deep learning you can do with this library;
6. The basics of the Keras library and some of the deep learning you can do with this library;
7. A look at the PyTorch library, how it is different from the other two, and the basics of deep learning with this library;
8. And so much more
Even if you are just a beginner, with very little programming knowledge but lots of big dreams and even bigger ideas, this book is going to give you the tools that you need to start with deep learning
Описание: This cookbook will help you to gain a solid understanding of deep reinforcement learning (RL) algorithms with the help of concise, easy-to-follow implementations from scratch. You`ll learn how to implement these algorithms with minimal code and develop AI applications to solve real-world and business problems using RL.
Автор: Atienza, Rowel Название: Advanced deep learning with tensorflow 2 and keras - ISBN: 1838821651 ISBN-13(EAN): 9781838821654 Издательство: Неизвестно Рейтинг: Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A second edition of the bestselling guide to exploring and mastering deep learning with Keras, updated to include TensorFlow 2.x with new chapters on object detection, semantic segmentation, and unsupervised learning using mutual information.
Описание: With this book, you`ll learn how to train, evaluate and deploy Tensorflow and Keras models as real-world web applications. After a hands-on introduction, you`ll use a sample model to explore the details of deep learning, selecting the right layers that can solve a given problem. By the end of the book, you`ll build a Bitcoin application that ...
Neural networks are getting smaller. Much smaller. The OK Google team, for example, has run machine learning models that are just 14 kilobytes in size--small enough to work on the digital signal processor in an Android phone. With this practical book, you'll learn about TensorFlow Lite for Microcontrollers, a miniscule machine learning library that allows you to run machine learning algorithms on tiny hardware.
Authors Pete Warden and Daniel Situnayake explain how you can train models that are small enough to fit into any environment, including small embedded devices that can run for a year or more on a single coin cell battery. Ideal for software and hardware developers who want to build embedded devices using machine learning, this guide shows you how to create a TinyML project step-by-step. No machine learning or microcontroller experience is necessary.
Learn practical machine learning applications on embedded devices, including simple uses such as speech recognition and gesture detection
Train models such as speech, accelerometer, and image recognition, you can deploy on Arduino and other embedded platforms
Understand how to work with Arduino and ultralow-power microcontrollers
Use techniques for optimizing latency, energy usage, and model and binary size
Chapter Goal: Introduce TensorFlow 2 and discuss preliminary material on conventions and practices specific to TensorFlow.
- Differences between TensorFlow iterations
- TensorFlow for economics and finance
- Introduction to tensors
- Review of linear algebra and calculus
- Loading data for use in TensorFlow
- Defining constants and variables
Chapter 2: Machine Learning and Economics
Chapter Goal: Provide a high-level overview of machine learning models and explain how they can be employed in economics and finance. Part of the chapter will review existing work in economics and speculate on future use-cases.
- Introduction to machine learning
- Machine learning for economics and finance
- Unsupervised machine learning
- Supervised machine learning
- Regularization
- Prediction
- Evaluation
Chapter 3: Regression
Chapter Goal: Explain how regression models are used primarily for prediction purposes in machine learning, rather than hypothesis testing, as is the case in economics. Introduce evaluation metrics and optimization routines used to solve regression models.
- Linear regression
- Partially-linear regression
- Non-linear regression
- Logistic regression
- Loss functions
- Evaluation metrics
- Optimizers
Chapter 4: Trees
Chapter Goal: Introduce tree-based models and the concept of ensembles.
- Decision trees
- Regression trees
- Random forests
- Model tuning
Chapter 5: Gradient Boosting
Chapter Goal: Introduce gradient boosting and discuss how it is applied, how models are tuned, and how to identify important features.
- Introduction to gradient boosting
- Boosting with regression models
- Boosting with trees
- Model tuning
- Feature importance
Chapter 6: Images
Chapter Goal: Introduce the high level Keras and Estimators APIs. Explain how these libraries can be used to perform image classification using a variety of deep learning models. Also, discuss the use of pretrained models and fine-tuning. Speculate on image classification uses in economics and finance.
Описание: Imagine a world where you can make a computer program learn for itself? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin?
DO YOU WANT TO LEARN THE BASICS OF PYTHON PROGRAMMING QUICKLY?
Imagine a world where you can make a computer program learn for itself? What if it could recognize who is in a picture or the exact websites that you want to look for when you type it into the program? What if you were able to create any kind of program that you wanted, even as a beginner programmer, without all of the convoluted codes and other information that makes your head spin?
This is actually all possible. The programs that were mentioned before are all a part of machine learning. This is a breakthrough in the world of information technology, which allows the computer to learn how to behave, rather than asking the programmer to think of every single instance that may show up with their user ahead of time. it is taking over the world, and you may be using it now, without even realizing it.
Some of the topics that we will discuss include:
The Fundamentals of Machine Learning, Deep learning, And Neural Networks
How To Set Up Your Environment And Make Sure That Python, TensorFlow And Scikit-Learn Work Well For You
How To Master Neural Network Implementation Using Different Libraries
How Random Forest Algorithms Are Able To Help Out With Machine Learning
How To Uncover Hidden Patterns And Structures With Clustering
How Recurrent Neural Networks Work And When To Use
The Importance Of Linear Classifiers And Why They Need To Be Used In Machine Learning
And Much More
This guidebook is going to provide you with the information you need to get started with Python Machine Learning. If you have an idea for a great program, but you don't have the technical knowledge to make it happen, then this guidebook will help you get started. Machine learning has the capabilities, and Python has the ease, to help you, even as a beginner, create any product that you would like.
If you have a program in mind, or you just want to be able to get some programming knowledge and learn more about the power that comes behind it, then this is the guidebook for you.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru