Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval, Zhang Dengsheng
Автор: Momoh James Название: Smart Grid: Fundamentals of Design and Analysis ISBN: 047088939X ISBN-13(EAN): 9780470889398 Издательство: Wiley Рейтинг: Цена: 13773.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book is written as primer hand book for addressing the fundamentals of smart grid. It provides the working definition the functions, the design criteria and the tools and techniques and technology needed for building smart grid. The book is needed to provide a working guideline in the design, analysis and development of Smart Grid.
Описание: Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic.This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.
Автор: Binxing Fang, Jia-Yan Yao Название: [Set Online Social Network Analysis, Vol 1-3] ISBN: 311062656X ISBN-13(EAN): 9783110626568 Издательство: Walter de Gruyter Цена: 38865.00 р. Наличие на складе: Нет в наличии.
Описание: This reader-friendly textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. discusses techniques for indexing, image ranking, and image presentation, along with image database visualization methods;
Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis covers the most current advances on how to apply classification techniques to a wide variety of clinical applications that are appropriate for researchers and biomedical engineers in the areas of machine learning, deep learning, data analysis, data management and computer-aided diagnosis (CAD) systems design. The book covers several complex image classification problems using pattern recognition methods, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Bayesian Networks (BN) and deep learning. Further, numerous data mining techniques are discussed, as they have proven to be good classifiers for medical images.
Examines the methodology of classification of medical images that covers the taxonomy of both supervised and unsupervised models, algorithms, applications and challenges
Discusses recent advances in Artificial Neural Networks, machine learning, and deep learning in clinical applications
Introduces several techniques for medical image processing and analysis for CAD systems design
Описание: Explores methods and strategies related to multimedia information retrieval systems. Featuring coverage on a broad range of topics including content-based image retrieval, text-based image retrieval, fuzzy object shape features, encoding, and indexing, this book is aimed at library science and information technology specialists, and researchers seeking current information.
Описание: Explores new developments in the field of information and communication technologies and explores how complex information systems interact with and affect one another, woven into the fabric of an information-rich world. This handbook includes coverage of customer experience management, information systems planning, cellular networking, public policy development, and knowledge governance.
Описание: Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing is an up-to-date overview of audio and video content analysis.
Автор: Surekha Borra; Rohit Thanki; Nilanjan Dey Название: Satellite Image Analysis: Clustering and Classification ISBN: 9811364230 ISBN-13(EAN): 9789811364235 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Thanks to recent advances in sensors, communication and satellite technology, data storage, processing and networking capabilities, satellite image acquisition and mining are now on the rise. In turn, satellite images play a vital role in providing essential geographical information. Highly accurate automatic classification and decision support systems can facilitate the efforts of data analysts, reduce human error, and allow the rapid and rigorous analysis of land use and land cover information. Integrating Machine Learning (ML) technology with the human visual psychometric can help meet geologists’ demands for more efficient and higher-quality classification in real time.
This book introduces readers to key concepts, methods and models for satellite image analysis; highlights state-of-the-art classification and clustering techniques; discusses recent developments and remaining challenges; and addresses various applications, making it a valuable asset for engineers, data analysts and researchers in the fields of geographic information systems and remote sensing engineering.
Автор: Binxing Fang, Yan Jia Название: Groups and Interaction ISBN: 3110597772 ISBN-13(EAN): 9783110597776 Издательство: Walter de Gruyter Рейтинг: Цена: 16169.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume set provides a systematic overview of theories and technique on social network analysis.Volume 2 of the set mainly focuses on the formation and interaction of group behaviors. Users’ behavior analysis, sentiment analysis, influence analysis and collective aggregation are discussed in detail as well. It is an essential reference for scientist and professionals in computer science.
Описание: Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic.This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru