Patterns Identification and Data Mining in Weather and Climate, Hannachi Abdelwaheb
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Bradley Efron , Trevor Hastie Название: Computer Age Statistical Inference, Student Edition ISBN: 1108823416 ISBN-13(EAN): 9781108823418 Издательство: Cambridge Academ Рейтинг: Цена: 5069.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.
Автор: Dong, Guozhu Название: Exploiting the Power of Group Differences ISBN: 3031007859 ISBN-13(EAN): 9783031007859 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Wei Wang; Jiong Yang Название: Mining Sequential Patterns from Large Data Sets ISBN: 1441937072 ISBN-13(EAN): 9781441937070 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Bridgman Название: The Global Climate System ISBN: 1107668379 ISBN-13(EAN): 9781107668379 Издательство: Cambridge Academ Рейтинг: Цена: 9662.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook considers the physical, social and economic aspects of the global climate system, through readable accounts of recent in climatology. Chapters contain essays by respected specialists in the field to enhance the understanding of selected topics. It is invaluable to advanced students of climatology and atmospheric science.
Автор: Zhang Zhihua, Li Jianping Название: Big Data Mining for Climate Change ISBN: 0128187034 ISBN-13(EAN): 9780128187036 Издательство: Elsevier Science Рейтинг: Цена: 19875.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Climate change mechanisms, impacts, risks, mitigation, adaption, and governance are widely recognized as the biggest, most interconnected problem facing humanity. Big Data Mining for Climate Change addresses one of the fundamental issues facing scientists of climate or the environment: how to manage the vast amount of information available and analyse it. The resulting integrated and interdisciplinary big data mining approaches are emerging, partially with the help of the United Nation's big data climate challenge, some of which are recommended widely as new approaches for climate change research. Big Data Mining for Climate Change delivers a rich understanding of climate-related big data techniques and highlights how to navigate huge amount of climate data and resources available using big data applications. It guides future directions and will boom big-data-driven researches on modeling, diagnosing and predicting climate change and mitigating related impacts.
This book mainly focuses on climate network models, deep learning techniques for climate dynamics, automated feature extraction of climate variability, and sparsification of big climate data. It also includes a revelatory exploration of big-data-driven low-carbon economy and management. Its content provides cutting-edge knowledge for scientists and advanced students studying climate change from various disciplines, including atmospheric, oceanic and environmental sciences; geography, ecology, energy, economics, management, engineering, and public policy.
Provides a step-by-step guide for applying big data mining tools to climate and environmental research
Presents a comprehensive review of theory and algorithms of big data mining for climate change
Includes current research in climate and environmental science as it relates to using big data algorithms
Описание: This book sheds light on the challenges facing social media in combating malicious accounts, and aims to introduce current practices to address the challenges.
Автор: De Rajat De Et Al Название: Machine Interpretation Of Patterns: Image Analysis And Data Mining ISBN: 9814299189 ISBN-13(EAN): 9789814299183 Издательство: World Scientific Publishing Рейтинг: Цена: 18216.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Offers both theoretical and application points of views, the developments and reviews in various areas of pattern recognition, image processing, machine learning, soft computing, data mining and web intelligence. This title is suitable for professionals and advanced graduates in computer science, mathematics and life sciences.
Описание: Advances in computer power and observing systems has led to the generation and accumulation of large scale weather & climate data begging for exploration and analysis. Pattern Identification and Data Mining in Weather and Climate presents, from different perspectives, most available, novel and conventional, approaches used to analyze multivariate time series in climate science to identify patterns of variability, teleconnections, and reduce dimensionality. The book discusses different methods to identify patterns of spatiotemporal fields. The book also presents machine learning with a particular focus on the main methods used in climate science. Applications to atmospheric and oceanographic data are also presented and discussed in most chapters. To help guide students and beginners in the field of weather & climate data analysis, basic Matlab skeleton codes are given is some chapters, complemented with a list of software links toward the end of the text. A number of technical appendices are also provided, making the text particularly suitable for didactic purposes. The topic of EOFs and associated pattern identification in space-time data sets has gone through an extraordinary fast development, both in terms of new insights and the breadth of applications. We welcome this text by Abdel Hannachi who not only has a deep insight in the field but has himself made several contributions to new developments in the last 15 years. - Huug van den Dool, Climate Prediction Center, NCEP, College Park, MD, U.S.A. Now that weather and climate science is producing ever larger and richer data sets, the topic of pattern extraction and interpretation has become an essential part. This book provides an up to date overview of the latest techniques and developments in this area. - Maarten Ambaum, Department of Meteorology, University of Reading, U.K. This nicely and expertly written book covers a lot of ground, ranging from classical linear pattern identification techniques to more modern machine learning, illustrated with examples from weather & climate science. It will be very valuable both as a tutorial for graduate and postgraduate students and as a reference text for researchers and practitioners in the field. - Frank Kwasniok, College of Engineering, University of Exeter, U.K.
Описание: This book emphasizes recent advances in the creation of biometric identification systems for various applications in the field of human activity. The book displays the problems that arise in modern systems of biometric identification, as well as the level of development and prospects for the introduction of biometric technologies.
Описание: This book emphasizes recent advances in the creation of biometric identification systems for various applications in the field of human activity. The book displays the problems that arise in modern systems of biometric identification, as well as the level of development and prospects for the introduction of biometric technologies.
Автор: Timothy Masters Название: Data Mining Algorithms in C++ ISBN: 148423314X ISBN-13(EAN): 9781484233146 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Discover hidden relationships among the variables in your data, and learn how to exploit these relationships. This book presents a collection of data-mining algorithms that are effective in a wide variety of prediction and classification applications. All algorithms include an intuitive explanation of operation, essential equations, references to more rigorous theory, and commented C++ source code. Many of these techniques are recent developments, still not in widespread use. Others are standard algorithms given a fresh look. In every case, the focus is on practical applicability, with all code written in such a way that it can easily be included into any program. The Windows-based DATAMINE program lets you experiment with the techniques before incorporating them into your own work. What you'll learn
Monte-Carlo permutation tests provide statistically sound assessment of relationships present in your data.
Combinatorially symmetric cross validation reveals whether your model has true power or has just learned noise by overfitting the data.
Feature weighting as regularized energy-based learning ranks variables according to their predictive power when there is too little data for traditional methods.
The eigenstructure of a dataset enables clustering of variables into groups that exist only within meaningful subspaces of the data.
Plotting regions of the variable space where there is disagreement between marginal and actual densities, or where contribution to mutual information is high, provides visual insight into anomalous relationships.
Who this book is for
The techniques presented in this book and in the DATAMINE program will be useful to anyone interested in discovering and exploiting relationships among variables. Although all code examples are written in C++, the algorithms are described in sufficient detail that they can easily be programmed in any language.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru