In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ng Bau Ch u's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.
Описание: The concept of "reformulation" has long been playing an important role in mathematical programming. A classical example is the penalization technique in constrained optimization that transforms the constraints into the objective function via a penalty function thereby reformulating a constrained problem as an equivalent or approximately equivalent unconstrained problem. More recent trends consist of the reformulation of various mathematical programming prob- lems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. Because of the recent advent of various tools in nonsmooth analysis, the reformulation approach has become increasingly profound and diversified. In view of growing interests in this active field, we planned to organize a cluster of sessions entitled "Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" in the 16th International Symposium on Mathematical Programming (ismp97) held at Lausanne EPFL, Switzerland on August 24-29, 1997. Responding to our invitation, thirty-eight people agreed to give a talk within the cluster, which enabled us to organize thirteen sessions in total. We think that it was one of the largest and most exciting clusters in the symposium. Thanks to the earnest support by the speakers and the chairpersons, the sessions attracted much attention of the participants and were filled with great enthusiasm of the audience.
Автор: Glenys Luke; Alexander S. Mishchenko Название: Vector Bundles and Their Applications ISBN: 1441948023 ISBN-13(EAN): 9781441948021 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In the last few years the use of geometrie methods has permeated many more branehes of mathematies and the seiences. Briefly its role may be eharaeterized as folIows. Whereas methods of mathematieal analysis deseribe phenomena 'in the sm all " geometrie methods eontribute to giving the picture 'in the large'. A seeond no less important property of geometrie methods is the eonvenienee of using its language to deseribe and give qualitative explanations for diverse mathematieal phenomena and patterns. From this point of view, the theory of veetor bundles together with mathematieal analysis on manifolds (global anal- ysis and differential geometry) has provided a major stimulus. Its language turned out to be extremely fruitful: connections on prineipal veetor bundles (in terms of whieh various field theories are deseribed), transformation groups including the various symmetry groups that arise in eonneetion with physieal problems, in asymptotie methods of partial differential equations with small parameter, in elliptie operator theory, in mathematieal methods of classieal meehanies and in mathematieal methods in eeonomies. There are other eur- rently less signifieant applieations in other fields. Over a similar period, uni- versity edueation has ehanged eonsiderably with the appearanee of new courses on differential geometry and topology. New textbooks have been published but 'geometry and topology' has not, in our opinion, been wen eovered from a prae- tieal applieations point of view.
Описание: Fibre bundles and connections.- Linear connections and Riemannian geometry.- Homotopy theory of principal fibre bundles. Classification.- Cohomology theory of fibre bundles. Characteristic classes.- Clifford algebras, spin structures and Dirac operators.- The Yang-Mills equation.- Matter fields and model building.- The gauge orbit space.- Elements of quantum gauge theory.- A Field restriction and field extension.- B The Conformal Group of the 4-sphere.- C Simple Lie algebras. Root diagrams.- D z -function regularization.- E K-theory and index bundles.- F Determinant line bundles.- G Eilenberg-MacLane spaces.- References. Index.
Автор: Alexander Schmitt Название: Affine Flag Manifolds and Principal Bundles ISBN: 3034803095 ISBN-13(EAN): 9783034803090 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Affine flag manifolds are infinite dimensional versions of familiar objects such as Gra mann varieties. The book features lecture notes, survey articles, and research notes - based on workshops held in Berlin, Essen, and Madrid - explaining the significance of these and related objects (such as double affine Hecke algebras and affine Springer fibers) in representation theory (e.g., the theory of symmetric polynomials), arithmetic geometry (e.g., the fundamental lemma in the Langlands program), and algebraic geometry (e.g., affine flag manifolds as parameter spaces for principal bundles). Novel aspects of the theory of principal bundles on algebraic varieties are also studied in the book.
Автор: Sinha Rajinikant Название: Smooth Manifolds ISBN: 8132221036 ISBN-13(EAN): 9788132221036 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers an introduction to the theory of smooth manifolds, helping students to familiarize themselves with the tools they will need for mathematical research on smooth manifolds and differential geometry.
1 Introduction.- 2 Notes on point set topology.- 3 The finite dimensional real vector space.- 4 Tensor Algebra.- 5 Affine space and euclidean space.- 6 Tensor analysis in euclidean space.- 7 A primer on smooth manifolds.- B Further Reading.
1 Introduction.- 2 Notes on point set topology.- 3 The finite dimensional real vector space.- 4 Tensor Algebra.- 5 Affine space and euclidean space.- 6 Tensor analysis in euclidean space.- 7 A primer on smooth manifolds.- B Further Reading.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru