Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Text Segmentation and Recognition for Enhanced Image Spam Detection: An Integrated Approach, Rajalingam Mallikka


Варианты приобретения
Цена: 15372.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Rajalingam Mallikka
Название:  Text Segmentation and Recognition for Enhanced Image Spam Detection: An Integrated Approach
ISBN: 9783030530495
Издательство: Springer
Классификация:


ISBN-10: 3030530493
Обложка/Формат: Paperback
Страницы: 114
Вес: 0.19 кг.
Дата издания: 25.08.2021
Язык: English
Размер: 23.39 x 15.60 x 0.69 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: This book discusses email spam detection and its challenges such as text classification and categorization.


Image Co-segmentation

Автор: Hati
Название: Image Co-segmentation
ISBN: 9811985693 ISBN-13(EAN): 9789811985690
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book presents and analyzes methods to perform image co-segmentation. In this book, the authors describe efficient solutions to this problem ensuring robustness and accuracy, and provide theoretical analysis for the same. Six different methods for image co-segmentation are presented. These methods use concepts from statistical mode detection, subgraph matching, latent class graph, region growing, graph CNN, conditional encoder–decoder network, meta-learning, conditional variational encoder–decoder, and attention mechanisms. The authors have included several block diagrams and illustrative examples for the ease of readers. This book is a highly useful resource to researchers and academicians not only in the specific area of image co-segmentation but also in related areas of image processing, graph neural networks, statistical learning, and few-shot learning.

Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI C

Автор: Puyol Antуn Esther, Pop Mihaela, Martнn-Isla Carlos
Название: Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI C
ISBN: 3030937216 ISBN-13(EAN): 9783030937218
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Multi-atlas segmentation of the aorta from 4D flow MRI: comparison of several fusion strategie.- Quality-aware Cine Cardiac MRI Reconstruction and Analysis from Undersampled k-space Data.- Coronary Artery Centerline Refinement using GCN Trained with Synthetic Data.- Novel imaging biomarkers to evaluate heart dysfunction post-chemotherapy: a preclinical MRI feasibility study.- A bi-atrial statistical shape model as a basis to classify left atrial enlargement from simulated and clinical 12-lead ECGs.- Vessel Extraction and Analysis of Aortic Dissection.- The Impact of Domain Shift on Left and Right Ventricle Segmentation in Short Axis Cardiac MR Images.- Characterizing myocardial ischemia and reperfusion patterns with hierarchical manifold learning.- Generating Subpopulation-Specific Biventricular Anatomy Models Using Conditional Point Cloud Variational Autoencoders.- Improved AI-based Segmentation of Apical and Basal Slices from Clinical Cine CMR.- Mesh Convolutional Neural Networks for Wall Shear Stress Estimation in 3D Artery Models.- Hierarchical multi-modality prediction model to assess obesity-related remodelling.- Neural Angular Plaque Characterization: Automated Quantification of Polar Distributionfor Plaque Composition.- Simultaneous Segmentation and Motion Estimation of Left Ventricular Myocardium in 3D Echocardiography using Multi-task Learning.- Statistical shape analysis of the tricuspid valve in hypoplastic left heart syndrome.- An Unsupervised 3D Recurrent Neural Networkfor Slice Misalignment Correction in CardiacMR Imaging.- Unsupervised Multi-Modality RegistrationNetwork based on Spatially Encoded Gradient Information.- In-silico analysis of device-related thrombosis for different left atrial appendage occluder settings.- Valve flattening with functional biomarkers for the assessment of mitral valve repair.- Multi-modality cardiac segmentation via mixing domains for unsupervised adaptation.- Uncertainty-Aware Training for Cardiac Resynchronisation Therapy Response Prediction.- Cross-domain Artefact Correction of Cardiac MRI.- Detection and Classification of Coronary Artery Plaques in Coronary Computed Tomography Angiography Using 3D CNN.- Predicting 3D Cardiac Deformations With Point Cloud Autoencoders.- Influence of morphometric and mechanical factors in thoracic aorta finite element modeling.- Right Ventricle Segmentation via Registration and Multi-input Modalities in Cardiac Magnetic Resonance Imaging from Multi-Disease, Multi-View and Multi-Center.- Using MRI-specific Data Augmentation to Enhance the Segmentation of Right Ventricle in Multi-disease, Multi-center and Multi-view Cardiac MRI.- Right Ventricular Segmentation from Short- and Long-Axis MRIs via Information Transition.- Tempera: Spatial Transformer Feature Pyramid Network for Cardiac MRI Segmentation.- Multi-view SA-LA Net: A framework for simultaneous segmentation of RV on multi-view cardiac MR Images.- Right ventricular segmentation in multi-view cardiac MRI using a unified U-net model.- Deformable Bayesian Convolutional Networks for Disease-Robust Cardiac MRI Segmentation.- Consistency based Co-Segmentation for Multi-View Cardiac MRI using Vision Transformer.- Refined Deep Layer Aggregation for Multi-Disease, Multi-View & Multi-Center Cardiac MR Segmentation.- A Multi-View Cross-Over Attention U-Net Cascade With Fourier Domain Adaptation For Multi-Domain Cardiac MRI Segmentation.- Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI using Efficient Late-Ensemble Deep Learning Approach.- Automated Segmentation of the Right Ventricle from Magnetic Resonance Imaging Using Deep Convolutional Neural Networks.- 3D right ventricle reconstruction from 2D U-Net segmentation of sparse short-axis and 4-chamber cardiac cine MRI views.- Late Fusion U-Net with GAN-based Augmentation for Generalizable Cardiac MRI Segmentation.- Using Out-of-Distribution Detection for Model Refinement in Cardiac Im

Reconstruction, Segmentation, and Analysis of Medical Images

Автор: Maria A. Zuluaga; Kanwal Bhatia; Bernhard Kainz; M
Название: Reconstruction, Segmentation, and Analysis of Medical Images
ISBN: 3319522795 ISBN-13(EAN): 9783319522791
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Registration.- Reconstruction.- Deep learning for heart segmentation.- Discrete optimization and probabilistic intensity modeling.- Atlas-based strategies.- Random forests.

Marginal Space Learning for Medical Image Analysis

Автор: Zheng
Название: Marginal Space Learning for Medical Image Analysis
ISBN: 1493905996 ISBN-13(EAN): 9781493905997
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications.

Clustering Techniques for Image Segmentation

Автор: Siddiqui
Название: Clustering Techniques for Image Segmentation
ISBN: 3030812324 ISBN-13(EAN): 9783030812324
Издательство: Springer
Рейтинг:
Цена: 12157.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book presents the workings of major clustering techniques along with their advantages and shortcomings. After introducing the topic, the authors illustrate their modified version that avoids those shortcomings. The book then introduces four modified clustering techniques, namely the Optimized K-Means (OKM), Enhanced Moving K-Means-1(EMKM-1), Enhanced Moving K-Means-2(EMKM-2), and Outlier Rejection Fuzzy C-Means (ORFCM). The authors show how the OKM technique can differentiate the empty and zero variance cluster, and the data assignment procedure of the K-mean clustering technique is redesigned. They then show how the EMKM-1 and EMKM-2 techniques reform the data-transferring concept of the Adaptive Moving K-Means (AMKM) to avoid the centroid trapping problem. And that the ORFCM technique uses the adaptable membership function to moderate the outlier effects on the Fuzzy C-meaning clustering technique. This book also covers the working steps and codings of quantitative analysis methods. The results highlight that the modified clustering techniques generate more homogenous regions in an image with better shape and sharp edge preservation. * Showcases major clustering techniques, detailing their advantages and shortcomings; * Includes several methods for evaluating the performance of segmentation techniques; * Presents several applications including medical diagnosis systems, satellite imaging systems, and biometric systems.

Metaheuristics for Data Clustering and Image Segmentation

Автор: Meera Ramadas; Ajith Abraham
Название: Metaheuristics for Data Clustering and Image Segmentation
ISBN: 3030040968 ISBN-13(EAN): 9783030040963
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this book, differential evolution and its modified variants are applied to the clustering of data and images. Metaheuristics have emerged as potential algorithms for dealing with complex optimization problems, which are otherwise difficult to solve using traditional methods. In this regard, differential evolution is considered to be a highly promising technique for optimization and is being used to solve various real-time problems. The book studies the algorithms in detail, tests them on a range of test images, and carefully analyzes their performance. Accordingly, it offers a valuable reference guide for all researchers, students and practitioners working in the fields of artificial intelligence, optimization and data analytics.

Hybrid Soft Computing for Image Segmentation

Автор: Siddhartha Bhattacharyya; Paramartha Dutta; Sourav
Название: Hybrid Soft Computing for Image Segmentation
ISBN: 3319472224 ISBN-13(EAN): 9783319472225
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization.The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.

Text Segmentation and Recognition for Enhanced Image Spam Detection: An Integrated Approach

Автор: Rajalingam Mallikka
Название: Text Segmentation and Recognition for Enhanced Image Spam Detection: An Integrated Approach
ISBN: 3030530469 ISBN-13(EAN): 9783030530464
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses email spam detection and its challenges such as text classification and categorization.

Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges

Автор: Mihaela Pop; Maxime Sermesant; Jichao Zhao; Shuo L
Название: Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges
ISBN: 3030120287 ISBN-13(EAN): 9783030120283
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-workshop proceedings of the 9th International Workshop on Statistical Atlases and Computational Models of the Heart: Atrial Segmentation and LV Quantification Challenges, STACOM 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 52 revised full workshop papers were carefully reviewed and selected from 60 submissions. The topics of the workshop included: cardiac imaging and image processing, machine learning applied to cardiac imaging and image analysis, atlas construction, statistical modelling of cardiac function across different patient populations, cardiac computational physiology, model customization, atlas based functional analysis, ontological schemata for data and results, integrated functional and structural analyses, as well as the pre-clinical and clinical applicability of these methods.

Hybrid Soft Computing for Image Segmentation

Автор: Bhattacharyya Siddhartha, Dutta Paramartha, de Sourav
Название: Hybrid Soft Computing for Image Segmentation
ISBN: 3319836846 ISBN-13(EAN): 9783319836843
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems.

Hybrid Soft Computing for Multilevel Image and Data Segmentation

Автор: de Sourav, Bhattacharyya Siddhartha, Chakraborty Susanta
Название: Hybrid Soft Computing for Multilevel Image and Data Segmentation
ISBN: 3319837583 ISBN-13(EAN): 9783319837581
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Image Segmentation - Principles, Techniques, and Applications

Автор: Lei
Название: Image Segmentation - Principles, Techniques, and Applications
ISBN: 111985900X ISBN-13(EAN): 9781119859000
Издательство: Wiley
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия