Incorporating the latest R packages as well as new case studies and applications, Using R and RStudio for Data Management, Statistical Analysis, and Graphics, Second Edition covers the aspects of R most often used by statistical analysts. New users of R will find the book's simple approach easy to understand while more sophisticated users will appreciate the invaluable source of task-oriented information.
New to the Second Edition
The use of RStudio, which increases the productivity of R users and helps users avoid error-prone cut-and-paste workflows
New chapter of case studies illustrating examples of useful data management tasks, reading complex files, making and annotating maps, "scraping" data from the web, mining text files, and generating dynamic graphics
New chapter on special topics that describes key features, such as processing by group, and explores important areas of statistics, including Bayesian methods, propensity scores, and bootstrapping
New chapter on simulation that includes examples of data generated from complex models and distributions
A detailed discussion of the philosophy and use of the knitr and markdown packages for R
New packages that extend the functionality of R and facilitate sophisticated analyses
Reorganized and enhanced chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots
Easily Find Your Desired Task
Conveniently organized by short, clear descriptive entries, this edition continues to show users how to easily perform an analytical task in R. Users can quickly find and implement the material they need through the extensive indexing, cross-referencing, and worked examples in the text. Datasets and code are available for download on a supplementary website.
Автор: Gandrud, Christopher, Название: Reproducible research with R and RStudio / ISBN: 0367144026 ISBN-13(EAN): 9780367144029 Издательство: Taylor&Francis Рейтинг: Цена: 25265.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Brings together the skills and tools needed for doing and presenting computational research. Using straightforward examples, the book takes you through an entire reproducible research workflow.
Автор: Franz Kronthaler; Silke Z?llner Название: Data Analysis with RStudio ISBN: 3662625172 ISBN-13(EAN): 9783662625170 Издательство: Springer Рейтинг: Цена: 4611.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The objective of this text is to introduce RStudio to practitioners and students and enable them to use R in their everyday work. It is not a statistical textbook, the purpose is to transmit the joy of analyzing data with RStudio. Practitioners and students learn how RStudio can be installed and used, they learn to import data, write scripts and save working results. Furthermore, they learn to employ descriptive statistics and create graphics with RStudio. Additionally, it is shown how RStudio can be used to test hypotheses, run an analysis of variance and regressions. To deepen the learned content, tasks are included with the solutions provided at the end of the textbook. This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.
Автор: Xie, Yihui (rstudio, Inc. Boston, Ma, Usa) Allaire, J.j. (rstudio) Grolemund, Garrett Название: R markdown ISBN: 1138359424 ISBN-13(EAN): 9781138359420 Издательство: Taylor&Francis Рейтинг: Цена: 13014.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The rmarkdown package has steadily evolved into a relatively complete ecosystem for authoring documents. This book provides a definitive guide to this ecosystem.
Автор: Xie, Yihui (rstudio, Inc. Boston, Ma, Usa) Hill, Alison Presmanes (oregon Health & Science Univ) Thomas, Amber (none) Название: Blogdown ISBN: 1138480452 ISBN-13(EAN): 9781138480452 Издательство: Taylor&Francis Рейтинг: Цена: 14545.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is the first book on how to create websites based on R Markdown. It makes it much easier to publish data analysis results and R computing/graphics output through websites. The book can be particularly useful to bloggers, and also generally useful to anyone who wants to create a professional personal website.
Автор: Xie, Yihui (rstudio, Inc. Boston, Ma, Usa) Allaire, J.j. (rstudio) Grolemund, Garrett Название: R markdown ISBN: 1138359335 ISBN-13(EAN): 9781138359338 Издательство: Taylor&Francis Рейтинг: Цена: 5358.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The rmarkdown package has steadily evolved into a relatively complete ecosystem for authoring documents. This book provides a definitive guide to this ecosystem.
Автор: Little Название: Statistical Analysis with Missing Data, Third Edit ion ISBN: 0470526793 ISBN-13(EAN): 9780470526798 Издательство: Wiley Рейтинг: Цена: 12664.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reflecting new application topics, Statistical Analysis with Missing Data offers a thoroughly up-to-date, reorganized survey of current methodology for handling missing data problems. The third edition reviews historical approaches to the subject and describe rigorous yet simple methods for multivariate analysis with missing values.
Описание: This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies. Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass spectrometry, time-of-flight data, and Fourier transform mass spectrometry are but a selection of the measurement platforms available to the modern analyst. Thus in practical proteomics or metabolomics, researchers will not only be confronted with new high dimensional data types—as opposed to the familiar data structures in more classical genomics—but also with great variation between distinct types of mass spectral measurements derived from different platforms, which may complicate analyses, comparison, and interpretation of results.
Описание: This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies.Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass spectrometry, time-of-flight data, and Fourier transform mass spectrometry are but a selection of the measurement platforms available to the modern analyst. Thus in practical proteomics or metabolomics, researchers will not only be confronted with new high dimensional data types—as opposed to the familiar data structures in more classical genomics—but also with great variation between distinct types of mass spectral measurements derived from different platforms, which may complicate analyses, comparison, and interpretation of results.
Автор: Mervyn G. Marasinghe; Kenneth J. Koehler Название: Statistical Data Analysis Using SAS ISBN: 3319692380 ISBN-13(EAN): 9783319692388 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data.
The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude.
Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem.
New to this edition:
• Covers SAS v9.2 and incorporates new commands • Uses SAS ODS (output delivery system) for reproduction of tables and graphics output • Presents new commands needed to produce ODS output • All chapters rewritten for clarity • New and updated examples throughout • All SAS outputs are new and updated, including graphics • More exercises and problems • Completely new chapter on analysis of nonlinear and generalized linear models • Completely new appendix
Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing.
Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application.
This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas--from science and engineering, to medicine, academia and commerce.
Includes input by practitioners for practitioners
Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models
Contains practical advice from successful real-world implementations
Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions
Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Автор: Washington, Simon Mannering, Fred (university Of S Название: Statistical and econometric methods for transportation data analysis ISBN: 0367199025 ISBN-13(EAN): 9780367199029 Издательство: Taylor&Francis Рейтинг: Цена: 17609.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Describing tools commonly used in the field, this textbook provides an understanding of a broad range of analytical tools required to solve transportation problems. It includes a wide breadth of examples and case studies in various aspects of transportation planning, engineering, safety, and economics.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru