Context-Aware Machine Learning and Mobile Data Analytics: Automated Rule-based Services with Intelligent Decision-Making, Sarker Iqbal, Colman Alan, Han Jun
Название: Context-Aware Computing ISBN: 3110555689 ISBN-13(EAN): 9783110555684 Издательство: Walter de Gruyter Цена: 20446.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book addresses the impact of ambient intelligence, particularly its user-centric context-awareness requirement on data management strategies and solutions. Techniques of conceptualizing, capturing, protecting, modelling, and querying context information, as well as context-aware data management application are discussed, making the book is an essential reference for computer scientists, information scientists and industrial engineers.
Описание: This book highlights cutting-edge applications of machine learning techniques for disaster management by monitoring, analyzing, and forecasting hydro-meteorological variables.
Описание: This book highlights cutting-edge applications of machine learning techniques for disaster management by monitoring, analyzing, and forecasting hydro-meteorological variables.
Автор: Boris Deliba?i?; Jorge E. Hern?ndez; Jason Papatha Название: Decision Support Systems V – Big Data Analytics for Decision Making ISBN: 3319185322 ISBN-13(EAN): 9783319185323 Издательство: Springer Рейтинг: Цена: 5590.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 'Big Data' Decision Making Use Cases.- The Roles of Big Data in the Decision-Support Process: An Empirical Investigation.- Cloud Enabled Big Data Business Platform for Logistics Services: A Research and Development Agenda.- Making Sense of Governmental Activities Over Social Media: A Data-Driven Approach.- Data-Mining and Expert Models for Predicting Injury Risk in Ski Resorts.- The Effects of Performance Ratios in Predicting Corporate Bankruptcy: The Italian Case.- A Tangible Collaborative Decision Support System for Various Variants of the Vehicle Routing Problem.- Decision Support Model for Participatory Management of Water Resource.- Modeling Interactions Among Criteria in MCDM Methods: A Review.
Описание: The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers.
Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.
Описание: The Evolution of Context-Aware RDF Knowledge Graphs.- Data Provenance and Accountability on the Web.- The Right (Provenance) Hammer for the Job: a Comparison of Data Provenance Instrumentation.- Contextualized Knowledge Graphs in Communication Network and Cyber-Physical System Modeling.- ProvCaRe: A Large-Scale Semantic Provenance Resource for Scientific Reproducibility.- Graph-Based Natural Language Processing for the Pharmaceutical Industry.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru