Описание: This book treats the derivation and implementation of a unified particle finite element formulation for the solution of fluid and solid mechanics, Fluid-Structure Interaction (FSI) and coupled thermal problems.FSI problems are involved in many engineering branches, from aeronautics to civil and biomedical engineering. The numerical method proposed in this book has been designed to deal with a large part of these. In particular, it is capable of simulating accurately free-surface fluids interacting with structures that may undergo large displacements, suffer from thermo-plastic deformations and even melt. The method accuracy has been successfully verified in several numerical examples. The thesis also contains the application of the proposed numerical strategy for the simulation of a real industrial problem. This thesis, defended at the Universitat Politecnica de Catalunya in 2015, was selected (ex aequo) as the best PhD thesis in numerical methods in Spain for the year 2015 by the Spanish Society of Numerical Methods in Engineering (SEMNI).
Описание: This book summarizes research being pursued within the Research Unit FOR 2089, funded by the German Research Foundation (DFG), the goal of which is to develop the scientific base for a paradigm shift towards dimensioning, structural realization and maintenance of pavements, and prepare road infrastructure for future requirements.
Автор: Zhao, Yong Название: Computational Fluid-Structure Interaction ISBN: 0128147709 ISBN-13(EAN): 9780128147702 Издательство: Elsevier Science Рейтинг: Цена: 28970.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Computational Fluid-Structure Interaction: Methods, Models, and Applications provides detailed explanations of a range of FSI models, their mathematical formulations, validations, and applications, with an emphasis on conservative unstructured-grid FVM. The first part of the book presents the nascent numerical methods, algorithms and solvers for both compressible and incompressible flows, computational structural dynamics (CSD), parallel multigrid, IOM, IMM and ALE methods. The second half covers the validations of these numerical methods and solvers, as well as their applications in a broad range of areas in basic research and engineering.
Provides a comprehensive overview of the latest numerical methods used in FSI, including the unstructured-grid finite volume method (FVM), parallel multigrid scheme, overlapping mesh, immersed object method (IOM), immersed membrane method (IMM), arbitrary Lagragian-Eulerian (ALE), and more
Provides full details of the numerical methods, solvers and their validations
Compares different methods to help readers more effectively choose the right approach for their own FSI problems
Features real-life FSI case studies, such as large eddy simulation of aeroelastic flutter of a wing, parallel computation of a bio-prosthetic heart valve, and ALE study of a micro aerial vehicle
This book is primarily for a first one-semester course on CFD; in mechanical, chemical, and aeronautical engineering. Almost all the existing books on CFD assume knowledge of mathematics in general and differential calculus as well as numerical methods in particular; thus, limiting the readership mostly to the postgraduate curriculum. In this book, an attempt is made to simplify the subject even for readers who have little or no experience in CFD, and without prior knowledge of fluid-dynamics, heattransfer and numerical-methods. The major emphasis is on simplification of the mathematics involved by presenting physical-law (instead of the traditional differential equations) based algebraic-formulations, discussions, and solution-methodology. The physical law based simplified CFD approach (proposed in this book for the first time) keeps the level of mathematics to school education, and also allows the reader to intuitively get started with the computer-programming. Another distinguishing feature of the present book is to effectively link the theory with the computer-program (code). This is done with more pictorial as well as detailed explanation of the numerical methodology. Furthermore, the present book is structured for a module-by-module code-development of the two-dimensional numerical formulation; the codes are given for 2D heat conduction, advection and convection. The present subject involves learning to develop and effectively use a product - a CFD software. The details for the CFD development presented here is the main part of a CFD software. Furthermore, CFD application and analysis are presented by carefully designed example as well as exercise problems; not only limited to fluid dynamics but also includes heat transfer. The reader is trained for a job as CFD developer as well as CFD application engineer; and can also lead to start-ups on the development of "apps" (customized CFD software) for various engineering applications.
"Atul has championed the finite volume method which is now the industry standard. He knows the conventional method of discretizing differential equations but has never been satisfied with it. As a result, he has developed a principle that physical laws that characterize the differential equations should be reflected at every stage of discretization and every stage of approximation. This new CFD book is comprehensive and has a stamp of originality of the author. It will bring students closer to the subject and enable them to contribute to it." --Dr. K. Muralidhar, IIT Kanpur, INDIA
Описание: 1 Introduction.- 1.1 Objectives.- 1.2 State of the art.- 1.2.1 Eulerian and Lagrangian approaches for free surface flow analysis .- 1.2.2 Stabilization techniques.- 1.2.3 Algorithms for FSI problems.- 1.3 Numerical model.- 1.3.1 Reasons.- 1.3.2 Essential features.- 1.3.3 Outline.- 1.4 Publications.- 2 Velocity-based formulations for compressible materials.- 2.1 Velocity formulation.- 2.1.1 From the local form to the spatial semi-discretization.- 2.1.2 Time integration.- 2.1.3 Linearization.- 2.1.4 Incremental solution scheme.- 2.2 Mixed velocity-pressure formulation.- 2.2.1 Quasi-incompressible form of the continuity equation.- 2.2.2 Solution method.- 2.3 Hypoelasticity.- 2.3.1 Velocity formulation for hypoelastic solids.- 2.3.2 Mixed Velocity-Pressure formulation for hypoelastic solids.- 2.3.3 Theory of plasticity.- 2.3.3.1 Hypoelastic-plastic materials.- 2.3.4 Validation examples.- 2.4 Summary and conclusions.- 3 Unified stabilized formulation for quasi-incompressible materials.- 3.1 Stabilized FIC form of the mass balance equation.- 3.1.1 Governing equations.- 3.1.2 FIC mass balance equation in space and in time.- 3.1.3 FIC stabilized local form of the mass balance equation.- 3.1.4 Variational form.- 3.1.5 FEM discretization and matrix form.- 3.2 Solution scheme for quasi-incompressible Newtonian fluids.- 3.2.1 Governing equations.- 3.2.2 Solution scheme.- 3.3 Solution scheme for quasi-incompressible hypoelastic solids.- 3.4 Free surface flow analysis.- 3.4.1 The Partiele Finite Element Method.- 3.4.1.1 Remeshing.- 3.4.1.2 Basic steps.- 3.4.1.3 Advantages and disadvantages.- 3.4.2 Mass conservation analysis.- 3.4.2.1 Numerical examples.- 3.4.3 Analysis of the conditioning of the solution scheme.- 3.4.3.1 Drawbacks associated to the real bulk modulus.- 3.4.3.2 Optimum value for the pseudo bulk modulus.- 3.4.3.3 Numerical examples.- 3.5 Validation examples.- 3.5.1 Validation of the Unified formulation for Newtonian fluids.- 3.5.2 Validation of the Unified formulation for quasi-incompressible hypoelastic solids.- 3.6 Summary and conclusions.- 4 Unified formulation for F SI problems.- 4.1 Introduction.- 4.2 FSI algorithm.- 4.3 Coupling with the Velocity formulation for the solid.- 4.4 Coupling with the mixed Velocity-Pressure formulation for the solid.- 4.5 Numerical examples.- 4.6 Summary and conclusions.- 5 Coupled thermal-mechanical formulation.- 5.1 Introduction.- 5.2 Heat problem.- 5.2.1 FEM discretization and solution for a time step.- 5.3 Thermal coupling.- 5.3.1 Numerical examples.- 5.4 Phase change.- 5.4.1 Numerical example: melting of an ice block.- 5.5 Summary and conclusions.- 6 Industrial application: PFEM Analysis Model of NPP Severe Accident.- 6.1 Introduction.- 6.1.1 Assumptions allowed by the specification.- 6.2 Numerical method.- 6.3 Basic Model.- 6.3.1 Problem data.- 6.3.2 Preliminary study.- 6.3.3 Numerical results.- 6.4 Detailed model.- 6.4.1 Problem data.- 6.4.2 Preliminary study.- 6.4.3 Numerical results.- 6.5 Summary and conclusions.- 7 Conclusions and future lines of research.- 7.1 Contributions.- 7.2 Lines for future work.
Автор: Shashikanth Banavara N. Название: Dynamically Coupled Rigid Body-Fluid Flow Systems ISBN: 3030826457 ISBN-13(EAN): 9783030826451 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a unified study of dynamically coupled systems involving a rigid body and an ideal fluid flow from the perspective of Lagrangian and Hamiltonian mechanics.
Описание: Proceedings of the IUTAM Symposium held in New Jersey, USA, 2-6 June 2003
Автор: Anderson, Dale A. Название: Computational fluid mechanics and heat transfer / ISBN: 1591690374 ISBN-13(EAN): 9781591690375 Издательство: Taylor&Francis Рейтинг: Цена: 19140.00 р. Наличие на складе: Поставка под заказ.
Описание: Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer. Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student’s understanding of the fundamentals and applications.
Описание: Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI.
Описание: This book presents selected papers from the 3rd International Workshop on Computational Engineering held in Stuttgart from October 6 to 10, 2014, bringing together innovative contributions from related fields with computer science and mathematics as an important technical basis among others.
Computational fluid-structure interaction and flow simulation are challenging research areas that bring solution and analysis to many classes of problems in science, engineering, and technology. Young investigators under the age of 40 are conducting much of the frontier research in these areas, some of which is highlighted in this book. The first author of each chapter took the lead role in carrying out the research presented. The topics covered include
Computational aerodynamic and FSI analysis of wind turbines,Simulating free-surface FSI and fatigue-damage in wind-turbine structural systems,Aorta flow analysis and heart valve flow and structure analysis,Interaction of multiphase fluids and solid structures,Computational analysis of tire aerodynamics with actual geometry and road contact, andA general-purpose NURBS mesh generation method for complex geometries.
This book will be a valuable resource for early-career researchers and students — not only those interested in computational fluid-structure interaction and flow simulation, but also other fields of engineering and science, including fluid mechanics, solid mechanics and computational mathematics – as it will provide them with inspiration and guidance for conducting their own successful research. It will also be of interest to senior researchers looking to learn more about successful research led by those under 40 and possibly offer collaboration to these researchers.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru