Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Generative Adversarial Learning: Architectures and Applications, Razavi-Far Roozbeh, Ruiz-Garcia Ariel, Palade Vasile


Варианты приобретения
Цена: 25155.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Razavi-Far Roozbeh, Ruiz-Garcia Ariel, Palade Vasile
Название:  Generative Adversarial Learning: Architectures and Applications
ISBN: 9783030913892
Издательство: Springer
Классификация:


ISBN-10: 3030913899
Обложка/Формат: Hardcover
Страницы: 372
Вес: 0.69 кг.
Дата издания: 14.03.2022
Серия: Intelligent systems reference library
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 132 illustrations, color; 13 illustrations, black and white; xiv, 355 p. 145 illus., 132 illus. in color.
Размер: 23.39 x 15.60 x 2.24 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs’ theoretical developments and their applications.
Дополнительное описание: An Introduction to Generative Adversarial Learning: Architectures and Applications.- Generative Adversarial Networks: A Survey on Training, Variants, and Applications.- Fair Data Generation and Machine Learning through Generative Adversarial Networks.



Hands-On Generative Adversarial Networks with PyTorch 1.x

Автор: Hany John, Walters Greg
Название: Hands-On Generative Adversarial Networks with PyTorch 1.x
ISBN: 1789530512 ISBN-13(EAN): 9781789530513
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book will help you understand how GANs architecture works using PyTorch. You will get familiar with the most flexible deep learning toolkit and use it to transform ideas into actual working codes. You will apply GAN models to areas like computer vision, multimedia and natural language processing using a sample-generation perspective.

Hands-On Generative Adversarial Networks with Keras

Автор: Valle Rafael
Название: Hands-On Generative Adversarial Networks with Keras
ISBN: 1789538203 ISBN-13(EAN): 9781789538205
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book will explore deep learning and generative models, and their applications in artificial intelligence. You will learn to evaluate and improve your GAN models by eliminating challenges that are encountered in real-world applications. You will implement GAN architectures in various domains such as computer vision, NLP, and audio processing

Generative Adversarial Networks for Image Generation

Автор: Mao Xudong, Li Qing
Название: Generative Adversarial Networks for Image Generation
ISBN: 981336047X ISBN-13(EAN): 9789813360471
Издательство: Springer
Цена: 20962.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book is intended for periodontal residents and practicing periodontists who wish to incorporate the principles of moderate sedation into daily practice. Comprehensive airway management and rescue skills are then documented in detail so that the patient may be properly managed in the event that the sedation progresses beyond the intended level.

Generating a New Reality: From Autoencoders and Adversarial Networks to Deepfakes

Автор: Lanham Micheal
Название: Generating a New Reality: From Autoencoders and Adversarial Networks to Deepfakes
ISBN: 1484270916 ISBN-13(EAN): 9781484270912
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Beginning-Intermediate user l;evel

Generative AI with Python and TensorFlow 2: Harness the power of generative models to create images, text, and music

Автор: Babcock Joseph, Bali Raghav
Название: Generative AI with Python and TensorFlow 2: Harness the power of generative models to create images, text, and music
ISBN: 1800200889 ISBN-13(EAN): 9781800200883
Издательство: Неизвестно
Рейтинг:
Цена: 12137.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Packed with intriguing real-world projects as well as theory, Generative AI with Python and TensorFlow 2 enables you to leverage artificial intelligence creatively and generate human-like data in the form of speech, text, images, and music.

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in C

Автор: Engelhardt Sandy, Oksuz Ilkay, Zhu Dajiang
Название: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in C
ISBN: 3030882098 ISBN-13(EAN): 9783030882099
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021.

Deep Generative Modeling

Автор: Tomczak Jakub M.
Название: Deep Generative Modeling
ISBN: 3030931579 ISBN-13(EAN): 9783030931575
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Поставка под заказ.

Описание: This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github. The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия